

Gas Switching Reforming for Clean Hydrogen Production with CO₂ Capture (GSR)

PI: Prof. Sean Amini Department of Mechanical Engineering

Co-PI: Prof. James Harris Department of Chemical and Biological Engineering

> The University of Alabama Tuscaloosa, AL

- Technology characteristics
- Technology advantages
- Planned project approach

- Technology characteristics
- Technology advantages
- Planned project approach

Gas Switching Reforming (GSR) based on the Chemical looping

Depleted air

, CO₂, H₂O

- Air reactor: Reduced metal (Me) is oxidized by air, producing a high temperature N₂ stream
- Fuel reactor: Metal oxide (MeO) provides oxygen for combustion to produce only CO₂ and steam

- No external solids circulation
- Easy to pressurize and scale up

Air

High load flexibility

- PSA off gas
- Tested previously at TRL3 (Ugwu,..., Amini, et al., Int. J. GHG Control, 114 (2022) 103593)

- Technology characteristics
- Technology advantages
- Planned project approach

Advantages of H₂ production via GSR relative to conventional steam-methane reforming in packed bed

Consideration	Packed Bed Reactor	GSR	Advantage
Efficiency of CO ₂ capture	Requires expensive and inefficient post- combustion CO ₂ capture	Inherent CO ₂ capture with no direct energy penalty	Gas switching mechanism avoids contact between N_2 and CO_2
Efficiency of heat transfer	Substantial heat transfer limitations to the reforming tubes and inside the packed catalyst bed	Heat from combustion reactions is stored directly in the thermal mass of the catalyst for use during reforming	Perfect heat transfer from combustion to reforming leads to high reforming temperatures and fuel conversion
Required air flowrate and resultant N ₂ purity	Excess air must be fed to achieve complete fuel combustion	Air can be fed in a stoichiometric ratio due to the high reactivity and reduced state of the oxygen carrier	Smaller required air feed rate produces a high purity N_2 stream and extracts less heat from the process

Experience in building pilot plants for Chemical Switching Technology

- Technology characteristics
- Technology advantages
- Planned project approach

Project Approach

We aims to move GSR from TRL 3, based on our previous experimental and TEA studies, to TRL 4, via completing the following tasks:

- 1. Conceptual design of a decarbonized large scale industrial GSR operating at elevated pressure using non-nickel-based oxygen carriers
- 2. Limited experimental kinetic measurements over non-nickel based oxygen carriers
- **3**. Preliminary techno-economic analysis (TEA)
- 4. Preliminary life cycle analysis (LCA)
 - TEA and LCA to build upon our previously published TEA (Nazir, ..., Amini, et al., Int. J. Hydrogen Energ., 46 (2021) 20142-20158
- 5. Development of technology maturation plan (TMP), environmental health and safety (EH&S) analysis, and technology gap analysis
- 6. Business case development

Budget: \$250k

Duration: August 1, 2024 – July 30, 2025

Thank you!

• Contact:

- Sean Amini, sean.amini@ua.edu
- James Harris, james.harris@eng.ua.edu

THE UNIVERSITY OF ALABAMA[®] College of Engineering