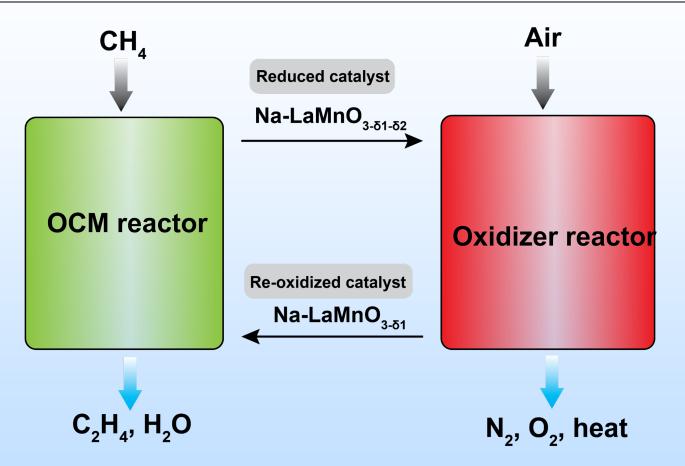
Chemical Looping Splitting of CO₂ and H₂O for Syngas Production and Oxidative Coupling of Methane for Producing Ethylene at Intermediate Temperatures

FE0032496

Chuancheng Duan University of Utah

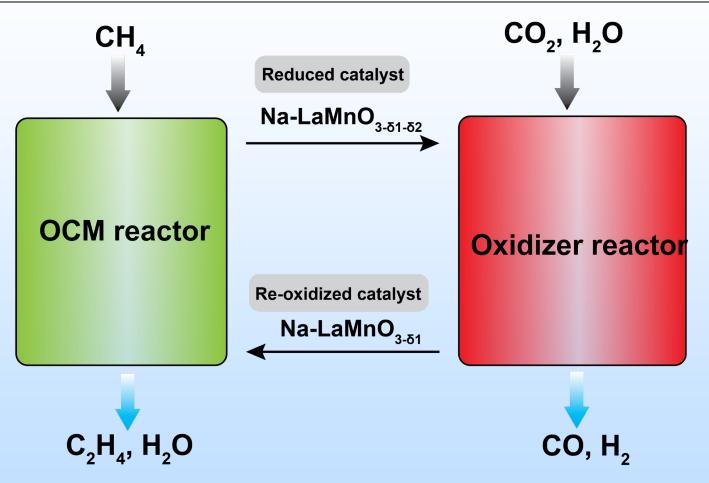
Federal Project Manager: Krista Hill

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024


Project Overview

- Funding (Federal Share: \$250,000. Cost Share: \$62,500)
- Overall Project Performance Dates 08/01/2024-07/31/2025
- Project Participants
 - University of UtahUniversity of Oklahoma

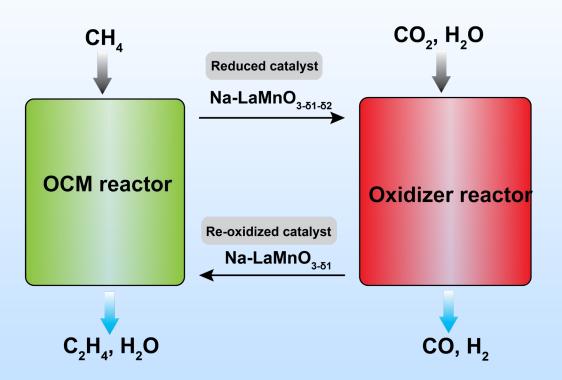
Project Objectives


The team envisions to design, analyze, and validate a novel **bifunctional chemical looping concept** that utilizes the **perovskite-based oxide** (Na-doped LaMnO_{3- δ}) as an oxygen carrier, which can be employed to produce chemicals and mitigate CO₂ emissions in both reduction and oxidation steps.

- Different aspects of the chemical looping design, perovskite oxide manufacturing, and testing have already validated under various operating conditions, with a technology readiness level of TRL 3 has been achieved.
- ➤ The proposed work will bring the TRL from TRL 3 to TRL 4.
- ▷ By the end of this Phase I project, the team will fully accomplish the chemical looping concept design and analysis, and the laboratory validation, aiming to provide sufficient results to demonstrate a TRL 4 to TRL 5 system in Phase II. The objectives of this project are to achieve highly efficient chemicals synthesis by valorizing CH_4 , CO_2 , and H_2O , mitigating emissions.

OCM Reactor (Reduction Reactor):

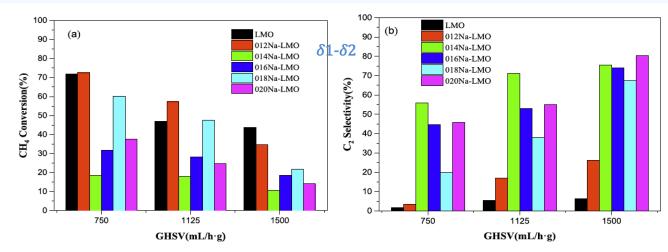
 $2/\delta_2$ Na-doped LaMnO_{3- δ_1} + 2CH₄ \rightarrow C₂H₄ + 2H₂O + 2/ δ_2 Na-doped LaMnO_{3- δ_1 - δ_2}

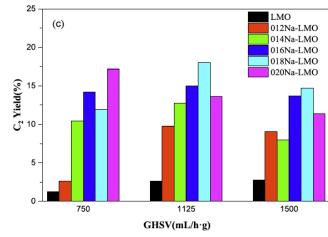


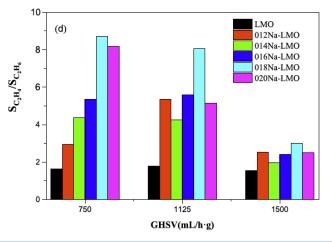
Oxidation Reactor:

 $\frac{1/\delta_2 \text{Na-doped LaMnO}_{3-\delta 1-\delta 2} + \text{CO}_2 \rightarrow \text{CO} + \frac{1}{\delta_2 \text{Na-doped LaMnO}_{3-\delta 1}}{1/\delta_2 \text{Na-doped LaMnO}_{3-\delta 1-\delta 2} + \text{H}_2 \text{O} \rightarrow \text{H}_2 + \frac{1}{\delta_2 \text{Na-doped LaMnO}_{3-\delta 1}}$

5

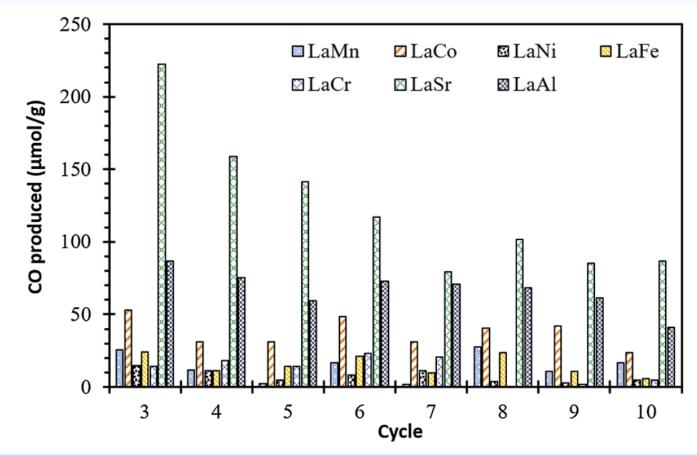

- 1. Shared Oxygen Carrier
- 2. Process Integration
- 3. Energy Efficiency
- 4. Greenhouse Gas Utilization
- 5. Product Yield Optimization
- 6. Lower Emissions
- 7. Simplified System Design
- 8. Economic Viability




OCM Reactor (Reduction Reactor):

Fuel, 299:120932.

 $2/\delta_2$ Na-doped LaMnO_{3- δ_1} + 2CH₄ \rightarrow C₂H₄ + 2H₂O + $2/\delta_2$ Na-doped LaMnO₃₋



Oxidation Reactor:

Applied Surface Science, 509:144908.

 $1/\delta_2$ Na-doped LaMnO_{3- $\delta_1-\delta_2$} + CO₂ \rightarrow CO + $1/\delta_2$ Na-doped LaMnO_{3- δ_1}

Technical Approach/Project Scope

Task 1: Project Management and Planning

Subtask 1.1 – Project Management Plan (PMP).

Subtask 1.2 – Technology Maturation Plan (TMP).

Subtask 1.3 – Community Benefits Plan (CBP).

Subtask 1.4 – Phase 2 Application

Task 2: Establishing desired end states and identifying most suitable path from initial to end.

Task 3. Develop and validate a computational model to support chemical looping system development.

Task 4: Experimental validation of the proposed chemical looping system.

Task 5: Technology Assessments.

Subtask 5.1 - Create a performance model and data table.

Subtask 5.2 – Preliminary Techno-Economic Analysis (TEA).

Subtask 5.3 – Preliminary Life Cycle Analysis (LCA).

Subtask 5.4 – Technology Environmental Health and Safety (EH&S) Analysis.

Subtask 5.5 – Technology Gap Analysis.

Technical Approach/Project Scope

Objective/Goal	Target	Approaches to achieve those targets
Ability to achieve		Using the 018Na-doped
high methane	Achieve a C2 yield of >30% in	LaMnO _{3-δ1} as the oxygen
conversion and high	the OCM reactor.	carrier.
C2 yield in the OCM		
reactor, and high	Achieve a syngas yield of >20%	Optimizing the operating
syngas yield in the	in the oxidation reactor	conditions of both COM
oxidation reactor		reactor and oxidation reactor.
A complete system	Deliver a comprehensive model	Establish computational
design and analysis	of the proposed system and	modeling.
of the chemical	report the TEA and LCA results	Perform TEA and LCA.
looping systems	of the proposed system	

Summary of Community Benefits / Societal Considerations (CB/SCI) and Impacts

CBP milestone #	Due date	Milestone Description
CBP milestone 1 (DEIA)	Budget Period 1 (Q4)	Two students and three senior personnels across the two collaborating institutions, and meet or exceed 50% diversity participation.
CBP milestone 2 (Energy Equity)	Budget Period 1 (Q4)	Organize at least one meeting with the disadvantaged communities
CBP milestone 3 (Workforce)	Budget Period 1 (Q4)	Train two graduate students, and develop the next-generation sustainable energy workforce

Thanks for your attention

FE0032496

Federal Project Manager: Krista Hill