Enhanced Biomimetic Three-Dimensional Nanoporous Gyroid Membrane for High Efficiency Carbon Dioxide Absorption

Juergen Biener / TCF-21-24965

Donglin Li¹, Natalie Hwee², Kun Wang¹, William L. Smith², Longsheng Feng², Sijia Huang², Jianchao Ye², Sangil Kim^{1*} and **Juergen Biener**^{2*}

¹Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA

²Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Email: sikim@uic.edu; <u>biener2@llnl.gov</u>

Work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract IM release number: LLNL-PRES-867746

Benefits of our 3D Gyroid Membrane Contactor technology

Tunable high permeance

Thin (10-100 micron)

membrane wall

3D Gyroid membrane contractor morphology:

- Two separate interwoven flow channel systems
- High membrane surface area packing density
- Reduced membrane polarization due to curved flow channels

High porosity (up to 95%) Pore size tunability Flow velocity map High membrane area packing density $-\frac{d(CO_2)}{\sqrt{dt}} \propto \frac{dC_{CO_2}}{dr} \times A$ provided by gyroid architecture CO2 Forced mixing maximizes CO₂ concentration remova gradient across membrane rate

Goal: Demonstrate 10x smaller device volume compared to current state-of-the-art membrane designs

The excellent performance of the 3D-GMC can be attributed to the system's high membrane packing density in combination with its flow channel architecture which suppresses membrane concentration polarization.

100

90

80

70

📌 This Work

HFMC Wet Scrubber

VSA

3

O[∞] 60

Removal (%)

State-of-the

art

Technology

3D-GMC

Increasing

3D Gyroid Membrane Contactor (**3D-GMC**) highlights

- \succ Ultra fast (< 1s contact time) and ultra compact (< 1 cm contact path)
- > >90% CO₂ from flue gas at a 6-times higher CO₂ flux per unit size compared to conventional hollow fiber membrane contactors
- > >80% removal of CO₂ from air at 12-fold higher CO₂ flux
- \succ Only 2% decrease in CO₂ removal rate during 100 h tests

COMSOL velocity profile of gas stream at 40ml/min

3D-GMCs offer ultra high packing densities

Fabrication of 3D-GMCs combines 3D printing with a self-organization process

Bicontineous nanoscale ligament-pore architecture resulting of nanoporous membrane wall from polymerization induced phase separation (PIPS)

Predicting the nanoscale morphology resulting by 3D phase field simulations

ACS Applied Materials & Interfaces 16 (**2024**) 38442-38457

Combining 3D printing with self-organization allows fabrication of 3D membranes with controlled macroscopic architectures and integrated nanoscale porosity

Characterization confirms the fabrication of defect free 3D-GMCs with integrated nanoscale porosity

Optimization of the membrane wall transport properties

Hydrophobic membrane for fast gas-phase trans-membrane CO₂ transport

Diffusion coefficient of CO₂ in air is 4 orders of magnitude higher than in water

Controlling the pore size distribution through the polymerization kinetics

Process optimization using COMSOL multiphysics simulations

Characteristic diffusion length scales: CO₂ in air ~ 6 mm/s vs. CO₂ in water ~ 60 μ m/s

Using high liquid flow rates helps to overcome limiting liquid phase CO₂ mass transport Compromise between CO₂ removal and CO₂ trans-membrane flux

3D-GMC enables process intensification

The 3D-GMC technology enables at least a six times higher CO₂ trans-membrane flux per unit size compared to a conventional hollow fiber membrane contactor (HFMC)

The excellent performance can be attributed to the combination of a higher packing density and a more turbulent flow pattern

Direct Air Capture

500 ppm CO₂ feed 0.8 M NaOH absorber

3D-GMC offers 10 times smaller system size for direct air capture compared to reported methods.

Long-term stability

only 2% decrease in CO₂ removal rate during 100 h tests

Upscaling of the 3D-GMC technology

D.A. Walker, J.L. Hedrick, C.A. Mirkin, Rapid, Science 366 (2019) 360-364.

7 cm		
	12 cm	
1 cm		

Preliminary 3D-GMC panel test prints

Modular Membrane technology is highly scalable

Reverse Osmosis Desalination plant Carlsbad, California The largest saltwater desalination plant in the Western Hemisphere providing 50 million gallons of desalinated seawater per day.

Comparison of CO₂ **Capture Systems**

Category	3D-GMC	HFMC	Wet Scrubber
CO ₂ Capture Efficiency (CE)	95 %	70–95 %	70 – 95%
CO ₂ Absorption Flux ¹	10.71 mol·m ⁻³ ·s ⁻¹	0.2 – 1.5 mol·m ⁻³ ·s ⁻¹	0.2 – 0.5 mol·m ⁻³ ·s ⁻¹
CO ₂ Volumetric Productivity ²	40.71 ton·m ⁻³ ·s ⁻¹	0.7 – 5.4 ton·m ⁻³ ·s ⁻¹	0.7 – 1.7 ton·m ⁻³ ·s ⁻¹
Specific Surface Area ³	7116 m²⋅m⁻³	600 – 3000 m²⋅m⁻³	100 – 200 m²⋅m ⁻³
Volume for 1t CO_2 /d Capture	0.02 m ³	0.2 – 1.4 m ³	0.6 – 1.4 m ³
Pressure Drop	Negligible	2000 ⁴	Negligible
Absorbent Volume ⁵	2.5 m ³	57.35m ³	-

Assumptions:

1: Characterized by the transmembrane flux (3D-GMC and HFMC) or CO₂ content in the product stream (wet scrubber).

2: The volumetric productivity is normalized by the volume of the absorber.

3: The specific surface area (SSA) is calculated by:

$$SSA = \frac{\text{Total Surface Area}}{\text{Volume of the Absorber}}$$

4: The HFMC module is set as 0.5 mm diameter, and 1 m length.

5: The absorbent volume is proportional to the absorber volume.

Cost savings from process intensification (CAPEX + smaller absorbent volume) and lower operational costs (low pressure drop, lower rate of absorber loss due to non-contact design) Well suited for mobile applications due to small system size (~20 l/ton CO₂ per day)

Broader impact beyond gas-phase CO₂ separation

Purification and Separation:

- Water/antibody/protein/rare earth purification
- Hemodialysis membrane
 - > 400,000+ Americans with permanent kidney failure
 - >50 million dialysis procedures performed annually in the US

Artificial membrane lung

- > Over 150,000 Americans die every year from lung failure
- > only 2000 lung transplants available
- Filtration:
 - Iow resistance filters (COVID-19)
- Catalysis:
 - Chemistry at liquid-liquid / liquid-gas interfaces
- Energy storage:
 - > 3D batteries

The excellent performance of the 3D-GMC can be attributed to the system's high membrane packing density in combination with its flow channel architecture which suppresses membrane concentration polarization.

100

90

80

70

📌 This Work

HFMC Wet Scrubber

VSA

3

O[∞] 60

Removal (%)

State-of-the

art

Technology

3D-GMC

Increasing

3D Gyroid Membrane Contactor (**3D-GMC**) highlights

- \succ Ultra fast (< 1s contact time) and ultra compact (< 1 cm contact path)
- > >90% CO₂ from flue gas at a 6-times higher CO₂ flux per unit size compared to conventional hollow fiber membrane contactors
- > >80% removal of CO₂ from air at 12-fold higher CO₂ flux
- \succ Only 2% decrease in CO₂ removal rate during 100 h tests

COMSOL velocity profile of gas stream at 40ml/min

Multi-pass performance

LFR: 60 mL/min GFR: 40 mL/min

3D-GMC performance test setup

Schematic representation of the experimental setup: 1-N₂ and CO₂ Gas Cylinders, 2-Mass Flow Controllers, 3-3D Gyroid Membrane, 4-Desorption Column, 5-Peristaltic Pump, 6-Back Flow Regulator, 7-Bubble Flow Meter, 8-Gas Chromatography, 9-Computer connected to 8.