

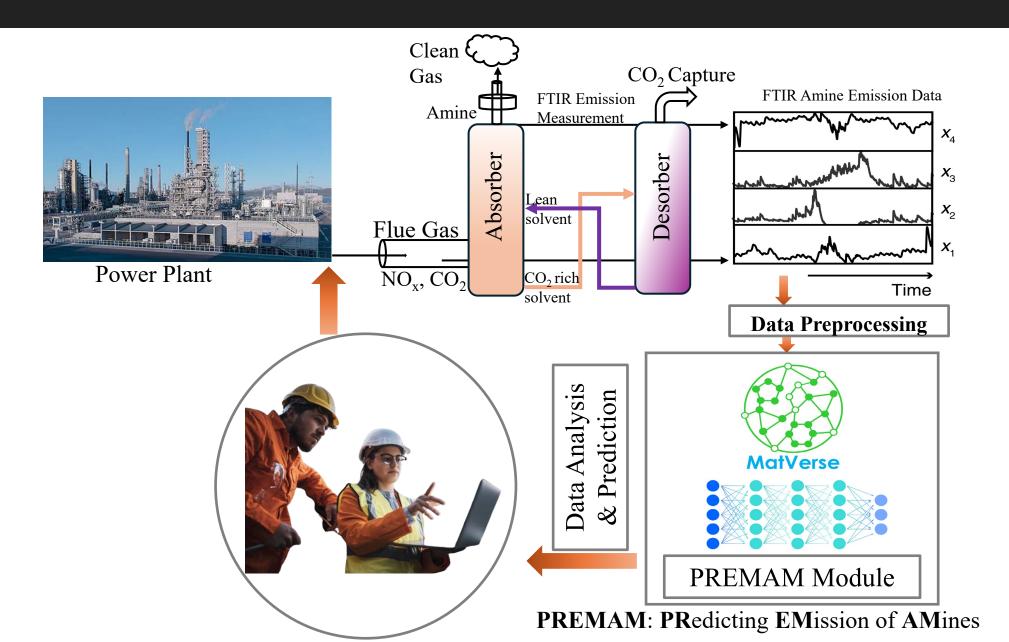
Machine Learning Tool for Prediction Amine Emission from Carbon Capture Technology

Lokendra Poudel* & Rahul Bhowmik

Polaron Analytics, 9059 Springboro Pike, Miamisburg, OH, USA

August 07, 2024

Project Overview



Objective: Develop machine learning (ML) tool to predict amine emissions and recommend effective mitigation strategies for carbon capture technologies in industrial and power generation facilities.

Significance: Enable real-time prediction of amine emissions from both the host site and carbon capture processes, particularly for solvent-based systems. This represents a significant advancement in carbon capture and environmental management using advanced ML techniques.

Benefits: Developed ML tool will support in managing aminebased solvents for post-combustion carbon capture, providing suggestions to maintain the solvent's composition over time.

Technical Approach

03

 $\langle \mathbf{P} \rangle$

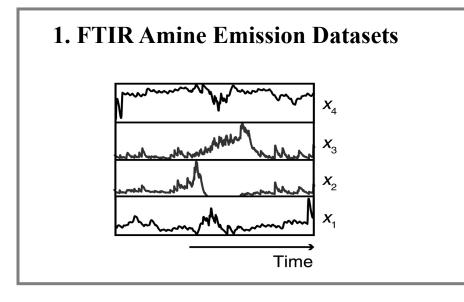
Optimization & Integration of PREMAM to MatVerse

A data analysis platform designed to prioritize user needs, allowing for comprehensive exploration of diverse datasets through advanced Machine learning techniques.

MatVers	8	bout	🗰 Module -	🖪 Contact	Settings ~		None None online ~
Select or upload file			Analysis ›	Supervised			
<i>MatVerse</i> can analyze various in-build and user-uploaded data using fourte supervised machine learning regression models. During the analysis, the fe are mapped to the output variable. The user can select any number of regr			CLADMA	Unsupervised			
				Deep Learning			
are in the process of incorporating many supervised classifiers and unsupervised machine learning methods. Also, we will integrate deep learning models in our future extensions.							
Choose File No file chosen			Upload				
	Linear Regression		lge Regression				Bayesian Ridge
Polynomial	Kernel Ridge	Regres	pport Vector sion	K-Nearest Neight	oor 🗌 PLS Regression		Decision Tree
Adaboost	Gradient Boost	🗆 Ne	ural network				
			Run	Stop			

Capabilities of ML Tool

Real-Time Prediction


Forecast future emissions using historical data and operating parameters Causal Impact Analysis

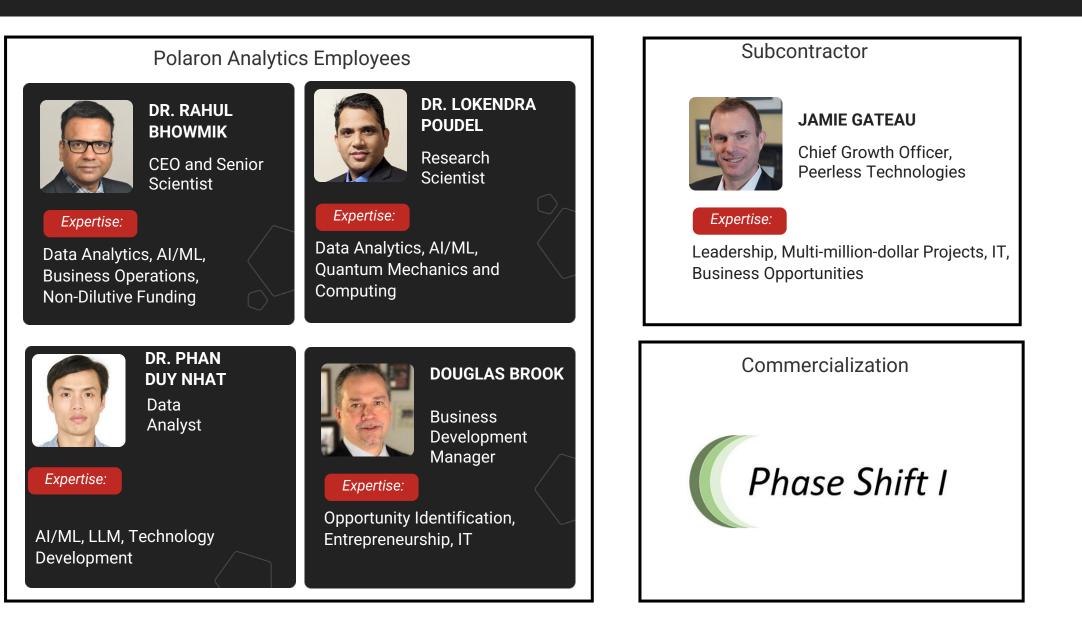
Baseline emissions analysis with/without stress tests Emissions Mitigation

Predict emissions in "what if" scenarios for optimal plant operation

Moving Forward

What we needed

3. Timeline of Datasets availability for data processing and model development


2. Baseline and stress test datasets with different scenarios

- ✓ *Water wash temperature increase*
- ✓ *Water wash temperature increase*
- ✓ *Flue gas temperature increase*
- ✓ Lean solvent flow rate decrease
- ✓ Lean solvent and flue gas flow rate decrease
- ✓ Lean solvent temperature increase

4. Relevant emission dataset (public or private) for robust model development

Team

Acknowledgement

Office of SBIR/STTR Programs

