

ENGINEERING-SCALE DEMONSTRATION OF THE MIXED-SALT PROCESS (MSP) FOR CO₂ CAPTURE

2024 FECM/NETL Carbon Management Research Project Review Meeting

PI: Indira Jayaweera, SRI

Presented by Elisabeth Perea, SRI

August 7, 2024 2:00-2:15 PM

DOE Contract # FE0031588

Disclaimer:

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

SRI: Overall project management, procurement, skid testing and operation, data collection and decommissioning of the skid.

NCCC: Host-site; provides flue gas, utilities, and skid installation.

Trimeric Corporation: Preparation of the Process Design Package (PDP) for the pilot, support the modular fabrication effort and Techno-Economic Analysis (TEA).

OLI Systems: Optimization of the process flowsheet for the 0.5 MW_e pilot, and modeling of 550 MW_e (NETL Case B12B) for the power plant integration.

EPIC Systems: Modular MSP system fabricator; procurement, construction, and delivery of the modular system. **Baker Hughes**: Cost-sharing industry partner

TRIMERIC CORPORATION

Project Period (BP1 to BP5): 07/01/2018 - 12/31/2025 Total: \$21,949,080

NCCC Project (BP4 and BP5): 03/1/2022 -12/31/2025 Project Cost: Govt. Share: \$13,418,080 Cost Share: \$3,710,643 Total: \$17,128,723

Current MSP Project Objectives

- Test at engineering scale (0.5 MW_e equivalent)
- Demonstrate the MSP can capture CO₂ at 90%
- Regenerate CO₂ with 95% purity
- Long-term testing periods under dynamic and steady state conditions with a real flue gas stream
- Address concerns related to scale-up and integration of the technology to coal-based power plants
- Determine the pathway to reaching DOE targets for CO₂ capture costs

Mixed-Salt Process (MSP) Technology Background

Process Summary

- Uses inexpensive, industrially available material (potassium and ammonium salts)
- No solvent degradation
- Has the potential for easy permitting in many localities
- Uses known process engineering
- Accelerated development possible

Demonstrated Benefits (by testing and modeling)

- Enhanced CO₂ capture efficiency
- High CO₂-loading capacity
- High-pressure release of CO₂ (10-12 bar)
- Reduced energy consumption (~ 2.3 MJ/kg-CO₂ for coal-based applications)

Expected Additional Benefits

- Capture from low-concentration CO₂ sources
- > 95% capture possible
- Removes common acid pollutants and particulates

K₂CO₃–NH₃–CO₂–H₂O system

- $CO_2(g) \leftarrow \rightarrow CO_2(aq)$
- $NH_3(aq) + CO_2(aq) + H_2O(liq) \leftarrow \rightarrow (NH_4)HCO_3(aq)$
- $(NH_4)_2CO_3 + CO_2(aq) + H_2O (liq) \leftrightarrow 2(NH_4)HCO_3(aq)$
- $2NH_3(aq) + CO_2(aq) \leftarrow \rightarrow (NH_4)NH_2CO_2$
- $(NH_4)NH_2CO_2(aq) + CO_2(aq) + 2 H_2O(liq) \leftarrow 2(NH_4)HCO_3(aq)$

 $K_2CO_3(aq) + CO_2(aq) + H_2O(liq) + Catalyst \leftarrow \rightarrow 2KHCO_3(aq)$

Simplified Process Flow Diagram

Advanced Ammonia Technology Background

Ammonia technology developed at SRI in 2004 MSP technology development started at SRI in 2012

Large Bench-scale

IHI Research Center. SRI, Menlo Park Yokohama, Japan (IHI)

2015-2017

DOE Contract: DE FE0012959

SRI has patent coverage for the MSP in the US, Japan, and Europe

2016

SRI has entered into a global exclusive licensing agreement with Baker Hughes for MSP use for postcombustion CO₂ capture in 2021 (https://netl.doe.gov/node/10671), and this partnership will pave the pathway for early entry of the technology into the market.

BP4 and BP5 Work Update and Schedule

Activity	Start Date	End Date	Task #	
BP4				
Bid Request Period	February 24, 2023	April 7, 2023	Subtask 8.1	
Bid Evaluations and Award	April 7, 2023	May 12, 2023	Subtask 8.1	
Contract Execution	May 15, 2023	June 27, 2023	Subtask 8.2	
Engineering & Procurement	June 28, 2023	August 9, 2024	Subtask 8.1-8.2	
Skid(s) Fabrication	November 6, 2023	August 9, 2024	Subtask 8.3	In Progress
Skid Prep & Delivery	August 19, 2024	September 4, 2024	Subtask 8.3	
On-site Installation	September 4, 2024	October 31, 2024	Subtask 9.2	
Shakedown & Pre-	November 15, 2024	December 31, 2024	Subtask 9.3-9.4	
Commissioning				
BP5				
Commissioning	January 1,2025	February 14, 2025	Task 11	
Pilot testing	February 18,2025	August 31,2025	Task 12	
Decommissioning	December 1, 2025	December 31, 2025	Task 13	

- SRI received DOE GO decision for the "Modular System" testing at NCCC site on May 22, 2024.
- SRI received the NCTE to extend BP4 from 7-31-2024 to 12-31-2024.

Engineering Scale Pilot Design

OSBL: From NCCC

Flue gas supply/return, process water, nitrogen, instrument air, electricity

Process Skid

- Flue gas and vent gas conditioning
- CO₂ absorption and water wash
- Solvent regeneration, CO₂ product wash, and solvent heat exchange •
- Ammonia stripping and recovery

Equipment

- Gas analyzers
- Vent header/knockout tank
- Solvent make-up (NH₃)
- Vent gas conditioning makeup(H_2SO_4)
- Chilled water (rental chiller)

System Layout at NCCC Bay 2 (~10 TPD CO₂ Capture)

Skid Progress

May 2024

Blower

Large bore SS piping

Large bore CS piping

Frames (4-skids)

Skid Progress

June 2024

Level 1

Skid Progress

July 2024

Completed Skid 2

Skids 1 and 4 (from the S-W corner)

Lessons Learned

- The details of connections between the site and process should be clearly defined at project onset to avoid having to fill gaps later
 - Flue gas, steam lines, auxiliary equipment
- Close collaboration between all parties (host site, EPC, technology developer) is essential to resolve issues quickly
- Leaving room initially for future changes/additions to the system design will minimize the impact of change orders
 - Extra electrical capacity to power add-on equipment
 - Extra I/O ports to accommodate added sensors

Test Plan

Parameter to vary	Possible Range of Variation	Metric(s)	
Flue gas flow rate	Flow rate through T101: 75- 100% of design capacity	Overall CO ₂ capture rate, Energy consumption	
Regenerator (T-310) temperature	160° to 175°C	Overall CO_2 capture rate, CO_2 desorption, Steam flow rate, Energy consumption Overall CO_2 capture Rate, L/G Ratio, Energy consumption	
Rich solvent flow from rich tank (TK-300) to regenerator (T-310)	Flow rate through P-300: 75-100% of design capacity		
Recycle flow rate in Absorbers 1 and Absorber 2 (T-210 and T-220)	Flow rate through P-210: 75-100% of design capacity	CO_2 capture rates in Absorber 1 and Absorber 2	
	Flow rate through P-220: 75-100% of design capacity		
Regenerator steam flow rate	0-100% of design capacity	Overall CO_2 capture rate, CO_2 desorption, Energy consumption	
NH3 stripper (T-510) reboiler temperature	E-550 75-100% of full power	Ammonia stripping efficiency, Energy consumption	
Water wash column (T- 230) recycle rate	Flow rate through P-230: 75-100% of design capacity	Ammonia removal efficiency	
CO ₂ wash column (T- 410) recycle rate	Flow rate through P-420: 75-100% of design capacity	CO ₂ purity	
H ₂ SO ₄ feed rate	1 to 1.5 lb/hr	ppmv contaminant removal from the clean flue gas	

Parametric testing:

•

- Test the sensitivities of key parameters on the performance.
- Performance is assessed by measuring the response variables for each run:
 - CO₂ Capture Efficiency (%)
 - Reboiler Duty (kJ/kg CO₂)
 - Ammonia Emissions (ppm)

Dynamic testing: Investigate the system's response and performance under transient and ramp operations

- Cold and warm starts
- Step changes in conditions such as flue gas composition and flow rate

	Range	Baseline
Inlet CO ₂	4 to 12.9%	12.9%
Capture Efficiency (%)	TBD	90%
L/G	1.4 to 2.5	1.88

Technology Maturation Plan

- DOE funding is critical for getting the technology to market
- Technology licensee Baker Hughes (BH) is actively participating in finding opportunities for technology deployment
- Completion of the current project is crucial for demonstrating the technology's competitiveness and collecting data for designing a validation pilot

5

Summary

- Expected delivery of skid to NCCC in 1 month
- Mixed Salt Skid operations will commence in Fall 2024 with full test plan to be carried out in 2025

Design becoming reality!

Acknowledgements

- Krista Hill, Andrew Jones, Jose Figueroa, Dan Hancu, Lynn Brickett, and others at NETL
- NCCC team
- Epic Systems team
- Trimeric team
- OLI Systems team
- BH team
- SRI team led by Dr. Indira Jayaweera

Thank you!

Contact:

Dr. Indira Jayaweera

indira.jayaweera@sri.com

1-650-859-4042