Application of a Transformational UKy 3 Ton/Day CO₂ Capture System at a Steel Process Plant DE-FE0032133

Heather Nikolic and Kunlei Liu

Institute for Decarbonization and Energy Advancement University of Kentucky Lexington, KY

http://uknow.uky.edu/research/unique-public-private-research-consortiumestablished-caer-co2-capture-pioneers

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5-9, 2024

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Objective

Demonstrate the UK CO_2 capture process at Nucor Steel Gallatin treating electric arc furnace evolved gas with a CO_2 concentration of ~1.5 vol%

Performance Dates: 4/25/2022-11/30/2026

BP1 4/25/22-11/30/24

- Design
- Contractor selection

BP2 12/1/24-11/30/25

- Site Prep
- Module Erection
- Tie-in at Nucor

BP3 12/1/25-11/30/26

- Evaluation
- Data Analysis
- Reporting

	DOE-NETL	Cost Share	Total	
Total	\$4,999,965	\$1,250,523	\$6,250,488	
Percent Share	80%	20%	100%	

Institute for Decarbonization Energy Advancement at PPL

and

R&D Center

Technology Deployed

- Absorber with T and Absorption Profile Control
- 2. Split Rich Stripper Feed
- Feedforward Advanced Process Control

Technical Approach

Absorber T Profile

- Liquid maldistribution
- **D** Bulge T
- □ Mass transfer
- $\Box \Delta P$
- □ Solvent cyclic capacity

Split Rich Stripper Feed

- \Box Stripper top to bottom ΔT
- □ Reboiler specific duty

Advanced Process Control Strategy

- □ Response time
- □ Average performance

Technology Background

Lagman College of Engineering ^{University of Kentucky.}

Energy

Advancement at

PPL

Center

Institute

for

Decarbonization

and R&D

• H3-1 Solvent Performance: ~27% reduction in solvent

reduction in solvent regeneration energy, 35-45% reduction in circulation rate, 1.5X cyclic capacity, low degradation, higher viscosity and lower surface tension compared to 30 wt% MEA

• CCSL Solvent Performance: ~30% reduction in solvent regeneration energy, 40% reduction in circulation rate, 2X cyclic capacity, low degradation, higher viscosity and lower surface tension compared to 30 wt% MEA

Absorber T control via discretized

In-situ liquid distribution • Open tower compact absorber with spray (50 µm droplets) leads to enhances mass transfer by 4X • Staged absorber and stripper feeds • CO₂ preconcentrating membrane results in increased rich carbon loading by 17% and a 25% reduction in regeneration energy • Solids circulation solvent recovery system reduces a mine emissions by

system reduces amine emissions by 50%

~100% CO₂ capture with dual-loop

Nitrosamine

Removal

Process
Heat transfer packing
Acoustic packing
Hydrophilic/phobic packing
De-watering membrane

packing In-situ liquid distribution

Technology Background

Technical Advantages

- Simple, solvent-independent process
- UK hindered primary amine solvent \rightarrow no stable nitrosamine formation
- Split rich stripper feed → reduced solvent regeneration energy requirement
- Advanced, feed-forward process controls → real-time solvent quality knowledge and automatic set points for energy minimization

Technical Challenge

Low CO₂ concentration (~1.5 vol%) → low L/G → possible maldistribution on packing, poor wettability and less flexible to load changes

Project Challenge

• Repurpose existing equipment with constrained budget

Unit Highlights

- □ 3 TPD scale
- □ Nucor Steel Gallatin, Ghent, KY
- □ 4 repurposed modules
- Simplified solvent-independent process with cooling tower and steam generator packages
- UK primary amine solvent applied
- □ Installed and tested at on EAF evolved flue gas (0.5-1.5 vol% inlet CO₂ concentrations)
- □ Footprint of CCS module: 28 x 44 ft. and 75 ft. tall
- □ Construction in 2025, Operation in 2025 and 2026
- □ 95+% CO₂ capture efficiency and 99+% CO₂ stream purity
- Degradation and emission studies
- Further demonstration of enabling technologies

Read more at:

http://uknow.uky.edu/research/uk-nucor-steel-gallatin-partnering-unique-co2-capture-project?j=492367&sfmc sub=122676171&l=22565 HTML&u=15148920&mid=10966798&jb=0

Institute for Decarbonization and **Energy Advancement at PPL R&D Center**

Repurpose Existing Modules with Reconfigurement SISBL P&IDs - Done

Example: Pretreatment Tower P&ID

Shown with permission from KMPS

Energy Advancement at institute for Decarbonization PPI and R&D Center

College of Engineering

Institute for Decarbonization

and

Energy Advancement

at

PPL

R&D

Center

Repurpose Existing Modules with Reconfigurement

ISBL Existing Equipment Review - Done

To repurpose existing columns, filters heat exchangers, pumps, the flue gas blower and instrumentation.

Level Pigman College of Engineering

nergy

vancement at

R&D Center

Repurpose Existing Modules with Reconfigurement SISBL 3-D Model - Done

Repurpose Existing Modules with Reconfigurement

ISBL General Arrangement - Done

College of Engineering

Repurpose Existing Modules with Reconfigurement

ISBL Structural Steel - Done

Repurpose Existing Modules with Reconfigurement

ISBL Module Lifting and Laydown - Done

Energy Advancement at PPL Institute for Decarbonization and R&D Center

BOP Systems

BOP Systems (CT, Steam Gen, Air Comp) Specification and Competing Quotes Collected - Done

Koch Modular		COOLING WATE	Date: 2/6/20 Rev: 0		
Paramus, New Jersey - 201.267.8670	~			By: SYL	
kochmodular.com				Project #: E22019	
Client: University of Kentucky	/			P&ID: OSBL EC	
Location: Gnent, KY (Near Louis)	/ille)			Page: 1 OF 2	
		GENERAL	REQUIREMENTS		
TYPE	IND	UCED DRAFT PACKAGED SYST	INSTALLATION	OUTDOOR	
SERVICE	SERVICE CHEMICAL INDUSTRY SUPPLIER/MODEL				
OPERATING	5 CON	DITIONS	CONSTRU	CTION	
HEAT TRANSFER FLUID		WATER	SHELL	HDPE OR FR	
TOTAL FLOW (GPM)		35	FILL	PVC	
TOTAL FLOW, MAX (GPM)		50	MIST ELIMINATOR	Vendor to advi	
			FAN	FRP BLADES	
TOTAL DUTY (BTU)		183,000			
TOTA DUTY, MAX (BTU)		250,000	CIRCULATION PUMP-TYPE	CENTRIFUGA	
TOTAL DUTY, MIN (BTU)			WETTED PARTS	CS OR DUCTILE II	
			CASING	CS OR DUCTILE I	
TEMPERATURE, SUPPLY (F)		85			
TEMPERATURE, RETURN (F)		100	MANUFACTURER/MODEL OR EQUAL	Cooling Tower System	
			https://www.coolingtowersystems.com	n/collections/model-t-	
REQUIRED PUMP HEAD (FT)		120	2/products/model-t-240		
		FLECTRICAL	BEQUIREMENTS		
M	DTORS		TEFC		
ENCLOSURE	FOR CO	ONTROLS	NEMA 4X(FIBERGLASS/AIR P	URGED) OR PAINTED SS	
MOTOR STAR	TER EN	CLOSURES	GENERAL PURPOSE		
PH	/Hz/V		3/60/460		
SERVIC	E FACT	OR	1 15		
MOTOR CI	MOTOR CLASSIFICATION		GENERAL PL	IRPOSE	
AREA CLA	SSIFIC	ATION	GENERAL PU	JRPOSE	
		CIVIL & STRUCT	URAL REQUIREMENTS		
INSTA	ALLATIO	N N	OUTDO	OUTDOOR	
NOIS	SE LEVE	L	<80 dB		
		WIND DE	SIGN CRITERIA		
RISK C	ATEGO	RY			
BASIC V	VIND SF	PEED	115 MPH		
		SEISMIC D	ESIGN CRITERIA		
RISK CATEGORY			IMPORTANCE FACTOR I _e	1	
SITE CLASS		D	SEISMIC DESIGN CATEGORY	С	
Ss		0.157	R	3.5	
S ₁		0.086			
	TEMPERATURE DESIGN CRITERIA				
WET BULB	TEMPER	RATURE	79 °F (NO	TE 2)	
			NOTES		
SELLER MAY RECOMMEND ALTER	NATIVE	MATERIALS IF COMPATIBLE	VITH THE PROCESS		
VENDOR TO CONFRIRM THAT THE	E 120 F	T OF TDH CAN BE MET.	S FOR LOUISVILLE, KY		

Cooling Tower				
Brand	Lead Time	Cost		
	3-4 weeks after receipt of purchase order	\$6,008.40		
А		-		
		\$6,008.40		
	TBD	\$7,000.00		
		\$840.00		
В		\$2,388.00		
		\$165.00		
		\$12,781		
	14-18 weeks	\$17,025		
С		\$1,452		
		\$18,477		

Decommissioning

Decommissioning SOW started

- □ Solvent removed and prepared for shipping
- □ Amine loop, addition lines and tanks rinsed
- □ Water wash tank cleaned
- \Box AC removed and bed rinsed
- **Temporary insulation removed**
- CEMS disconnected and sample lines removed

Experimental Plan

Parametric Campaign

 \Box ~5 months

Dynamic Testing with/out Feed-Forward Process Control

- \Box ~1 month
- \Box CO₂ capture efficiency

Long-Term Campaign

- \Box ~3 months, continuous operation included
- □ Measure: CO_2 capture efficiency, energy consumption, flue gas ΔP , absorber CO_2 mass transfer flux, attainable rich carbon loading, stripper top to bottom ΔT , reboiler specific duty, ramp rate and operability to achieve 95+% capture including ambient conditions and external load changes
- □ Vary: inlet CO₂ concentration, lean solvent flow rate, flue gas flow rate and T, lean solvent physical properties, inter-stage cooling duty, stripper P, reboiler T, absorber T profile

nan

÷		Planned	Actual
BP	Description	Completion	Completion
0		Date	Date
1	Project Kickoff Meeting Held	8/24/2022	5/31/2022
1	TMP Complete	8/24/2022	9/16/2022
1	Host Site Agreement (HSA) Complete	5/31/2023	5/24/2023
1	PDP Complete	11/30/2024	
1	Boiler Procurement Decision Point Meeting	8/31/2023	8/23/2023
1	General Contractor Selected	11/30/2024	
2	Nucor Site Prepared for Installation	4/3/2025	
2	CCS Installed at Nucor	8/1/2025	
2	Test Plan Complete	8/1/2025	
2	Commissioning Complete	11/30/2025	
3	Parametric/Dynamic Campaign Complete (Demonstrate 95% CO_2 capture efficiency and CO_2 product stream purity of \geq 95%; quantify absorber performance and reboiler duty)	3/31/2026	
3	Long-term Campaign Complete (1000 hours showing optimized process conditions, dynamic stability and operability)	6/30/2026	
3	TEA Complete	8/31/2026	
3	EH&S Complete	8/31/2026	

Project Success Criteria

Completion of BP1

- 1) Contract in place with engineering design firm for CCS reconfiguration and relocation \checkmark
- 2) Boiler specified \checkmark and procured
- 3) Contract in place with general contractor for relocation of CCS

Completion of BP2

- 1) Commissioned CCS at Nucor Steel Gallatin Site
- 2) Acceptance of test plan

Completion of BP3

- 1) At least 2 months of engineering-scale testing campaign of three transformational CO₂ capture technologies at the Nucor Steel Gallatin Site
- 2) Demonstrated $\geq 95\%$ CO₂ capture efficiency
- 3) Demonstrated CO_2 product stream purity of $\geq 95\%$
- 4) Techno-economic analysis showing Cost of Capture and Cost of CO₂ Avoided, calculated for gross CO₂ captured and net CO₂ captured
- 5) Attainment of TRL 6 of the three proposed transformational CO_2 capture technologies

Project Risks and Mitigation Strategies Perceived Technical Risk Mitigation Response Strategy

Perceived Technical Risk	Mitigation Response Strategy			
	- Redesign the liquid collector and distributor			
Severe liquid misdistribution due to L/G	- Reconfigure the absorber with local pump-			
	around			
Narrow operating hydraulic window due to	- Modify the interstage cooler duty			
discretized packing arrangement	- Reconsider the absorber temperature profile			
	while the capture efficiency target is considered			
Unstable operation of high-temperature L/R	- Increase the flow throughput			
solvent heat exchanger (plate-n-frame) due to	- Reconfigure with large gasket or replaced with			
vapor generation	Tube-n-Shell exchanger			
Time required by the control scheme calculation	- Simplified calculation logic will be developed			
block takes too long due to the complication of				
model with 100+ variable inputs for a fast process	maintained			
response time to be realized				
Degraded matchability between packing surface	- Solvent quality control methods will be			
and solvent physical properties due to the	developed			
accumulation of solvent impurities from flue gas	- In-situ packing cleaning will be evaluated			
and degradation over time				

Current Status

- 1. Host Site Agreement Executed
- 2. KMPS to be complete with ISBL design by end of August.
- 3. Nucor to complete BOP engineering and installation.

Collaboration with CCSI²

- 1. Design of experiments to minimize system performance uncertainty using limited experimental runs
- 2. Understand system performance impact from internal and external disturbances such as control valves and ambient conditions
- 3. Study the overall performance under dynamic operation
- 4. Investigate packing behavior such as wettability, channel flow and liquid hold up under dynamic operation
- 5. Develop a Fortran plug-in to estimate the wettability and mass transfer coefficient from gas velocity, liquid loading, local temperature and solvent chemical composition

Future Development & Commercialization man Commercialization Vitro Cane Run Generating Station, a PPL Corporation Facility 2 Modules Architectural Glass Nucor Neadville Plant Steel Demonstration Flat Glass Products Gallatin nstitute for Decarbonization Process Integration and Performance Verification Two, 230 MWe Absorption Trains 630" Absorber, 2,153,000 m³/hr EW Brown Generating Station, a PPL Corporation Facility **Proof of Concept** 4" Absorber. 50 m³/hr 3" Absorber, Bench-scale 30 L/miń CCS Bench-Scale CCS Cane Run Generating Station, Vapor-Concept a PPL Corporation Facility Liquid Equilibrium Simulation Solvent and Process Real Coal-Optimization and Natural Gas-Fired Flue Gas Sensitivity 32" Absorber. **Experimental Validation** 2400 m³/hr Small-pilot CCS 1.5" Column **Regional DAC Hub for** Mini-Scale Appalachian Prosperity Flow Dynamics and 180" Absorber, 168,000 m³/hr <1 kg CO₂/year <1 kg H₂/year 30 W Regenerator Large-pilot CCS <200 kg CO₂/year 44 44 10 kg H₂/year 210 W Regenerator Enabling Technologies 4 4 C Water Wash EW Brown Generating Station, a PPL Corporation Facility - VOC Removal - 99.8% CO₂ Capture 7,700 kg CO₂/year 350 kg H₂/year 470 W Regenerator 3.500 tonne CO₂/year 160 tonne H₂/year 1040 kW Regenerator

e of Engineering of Kentucky

Energy Advancement at

PPL

R&D Center

Expected Output

- Experience and knowledge on low concentration CO₂
 capture performance, solvent management and
 dynamic operability
- Control strategy automatically maintains the target CO_2 capture efficiency while continuously minimizing the solvent regeneration energy.
- Full-scale deployment if the post-combustion CO₂ capture is feasible and cost effective

nergy

vancement

R&D Center

Acknowledgements

U.S. DOE NETL: Krista Hill and Dan Hancu Nucor Steel Gallatin: Rob Rosenbaum, Paul Shovlin, Anna Mauser, and Hunter Summers EPRI: Abhoyjit Bhown Emerson/Cornerstone: Vigen Biglari ALL4: Karen Thompson PPL Corporation

Targets for Cost Reduction

Energy A	Institute f
dv	Or
an	Ð
lce	ec
m	ar
ent	bo
a	nit
t P	Zat
P	io
	n
28	an
	0
\bigcirc	
en	
te	

lan

Engineering

	B31A	B31B	UK Process
Capture Efficiency, %	N/A	90	95.0
Total Plant Cost, \$/1000	566971	1281324	972500
Net Power Output at Design Condiiton, MMe	727	646	647
COE (\$/MWh)	43.3	70.8	61.5
Fuel Costs	28.1	31.6	31.5
Variable Costs	1.7	5.6	4.4
Fixed Costs	3.6	8.6	6.6
Capital Costs	9.9	25.0	18.9
CO ₂ Captured, lb/MWh		764	804
Cost of CO ₂ Captured (\$/tonne CO ₂)		79.6	49.9
Reduction of CO ₂ Capture from RC B31B			37%

Appendix: Organizational Chart

Energy Advancement at PPL nstitute for Decarbonization and **R&D** Center

nan of Engineering _{Kentucky}

Appendix: Gantt Chart

ID	Task Name	Start	Finish	2010	2024
1	1. Project Management and Planning	Mon 4/25/22	Mon 11/30/26	2019	2024
2	1.1. PMP	Mon 4/25/22	Tue 5/24/22		
3	1.2. TMP	Mon 4/25/22	Wed 8/24/22	••••	
- 4	Budget Period 1	Mon 4/25/22	Sat 11/30/24		
5	2. HSA	Mon 4/25/22	Wed 5/31/23		
6	3. Relocation of Engineering Scale CCS	Mon 4/25/22	Wed 7/31/24		
7	3.1. Reconfiguration	Mon 4/25/22	Thu 8/15/24		
8	3.1.1. Absorber Internals	Mon 4/25/22	Thu 8/15/24		
9	3.1.2. Split Rich Stripper Feed	Mon 4/25/22	Thu 8/15/24		
10	3.1.3. Advanced Control Strategy	Mon 4/25/22	Thu 8/15/24		
11	3.1.4. Process Simplification	Mon 4/25/22	Thu 8/15/24		
12	3.2. Boiler	Mon 4/25/22	Sat 11/30/24		
13	3.3. Site Survey and Preparation	Mon 4/25/22	Sat 11/30/24		
- 14	3.4. Deconstruction and Removal Planning	Mon 4/25/22	Mon 9/30/24		
15	3.5. Shipping Preparation	Mon 4/25/22	Thu 10/31/24		
16	3.6. General Contractor Selection	Tue 10/25/22	Sat 11/30/24		
17	3.7. HAZOP Evaluation	Mon 8/1/22	Mon 9/30/24		
18	Budget Period 2	Sun 12/1/24	Sun 11/30/25		
19	4. Construction	Sun 12/1/24	Wed 4/30/25		
20	4.1. Foundation	Sun 12/1/24	Fri 2/28/25		•
21	4.2. Decommissioning and Shipping	Sun 12/1/24	Fri 2/28/25		•
22	4.3. Installation	Sat 3/1/25	Sat 5/31/25		
23	4.4. Tie-ins	Sun 6/1/25	Thu 7/31/25		
24	5. Test Plan	Tue 4/1/25	Thu 7/31/25		-
25	6. Start-up and Commissioning	Fri 8/1/25	Sun 11/30/25		-
26	6.1. Commissioning Plan	Fri 8/1/25	Sun 8/31/25		
27	6.2 Start-up and Commissioning	Mon 9/1/25	Sun 11/30/25		
28	Budget Period 3	Mon 12/1/25	Mon 11/30/26		
29	7. Parametric/Dynamic Campaign	Mon 12/1/25	Tue 3/31/26		-
30	7.1. Absorber Packing Performance	Mon 12/1/25	Tue 3/31/26		
31	7.2. Reboiler Specific Duty	Mon 12/1/25	Tue 3/31/26		
32	8. Long-term Campaign	Wed 4/1/26	Tue 6/30/26		
33	8.1. System Dynamic Stability and Operability	Wed 4/1/26	Thu 4/30/26		
34	8.2. Reboiler Specific Duty Minimization	Fri 5/1/26	Sun 5/31/26		
35	8.3. Packing Operability under Cyclic Operating Environment	Mon 6/1/26	Tue 6/30/26		
36	9. TEA	Fn 5/1/26	Mon 8/31/26		
37	9.1. Modeling	Fn 5/1/26	Mon 6/15/26		
38	9.2. Equipment Sizing	Tue 6/16/26	Wed 7/15/26		н
39	9.3. Analysis	Thu 7/16/26	Mon 8/31/26		
40	10. EH&S Risk Assessment	Fn 5/1/26	Mon 8/31/26		