FOA 2614 Round 3 Kickoff

Engineering-Scale/Pilots – Power and Industrial

Solutions for Today | Options for Tomorrow

Wednesday, August 7, 2024

Ron Munson Point Source Carbon Capture Technology Manager

Mike Fasouletos Point Source Carbon Capture Team Supervisor

Ben Omell Research General Engineer

PSC Strategic Vision

Support demonstration of first-of-a-kind carbon capture on power and industrial sectors coupled to dedicated and reliable carbon storage, that will lead to commercially viable carbon hub opportunities for widescale deployment and facilitate a carbon-free economy by 2050, emphasizing robust analysis of life cycle impacts, and understanding air/water quality impacts.

& Flexible Power

Low C Industry

Secure Carbon Storage Co. OFFSHORE GEOLOGICAL STORAGE SOLAR CO. CONVERSION AND REACTIVE CAPTURE CO. TRANSPORT CO. TRANSPORT DIRECT AIR CAPTURE CO. End-Usern CAPTURE DIRECT AIR CAPTURE CO. End-Usern CAPTURE POWERFUELS: CHEMICALS

CO₂ Conversion into durable Products

Focus Area 1: Support Power Retrofit Demos

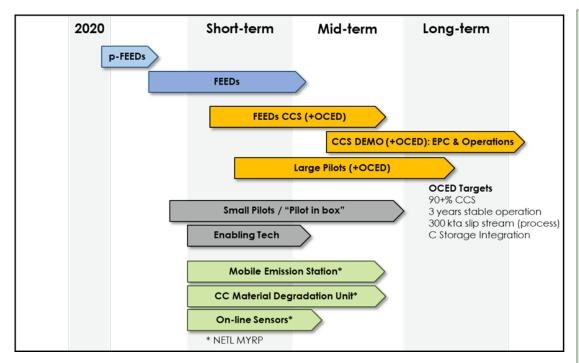
Enabling technologies

Focus Area 2: Net Zero, Flex Power

- Technology development to support flexible
 CCS with high capture efficiency
- o FEEDs to seed the formation of Carbon Hubs.

Focus Area 3: Support Industrial Retrofit Demos

Enabling technologies


Focus Area 4: Integrated decarbonized industrial + CCS

- Technology development for integrated decarbonized industrial processes coupled with transformational CCS
- FEEDs to seed the formation of Carbon Hubs.

Enabling Power/Industrial CCS Demonstrations

Develop technologies to support successful demonstration of retrofit CCS projects at electricity generation and industrial facilities with the emphasis of measuring, monitoring and controlling CCS-related environmental impacts to assure just and sustainable deployment.

- 1. Engineering control methods/equipment (e.g., pre-treatment, post-treatment acid wash, upstream filters, aerosol controls, corrosion inhibitors)
- 2. Evaluate and predict capture media degradation/secondary emissions
- 3. Reuse/recycle processes for capture material
- 4. Pollutant air dispersion models
- 5. Online sensors to measure gas- and liquid-phase degradation products
- 6. Carbon Capture pFEEDs & FEEDs
- 7. Mobile Pilots ("Pilots in box")

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

Department of Energy (DOE)
Office of Fossil Energy and Carbon Management (FECM)

CARBON MANAGEMENT

Funding Opportunity Announcement (FOA) Number: DE-FOA-0002614

AOI-1. Carbon Conversion Technology

The objective of AOI-1 is to support R&D investigating the conversion of carbon dioxide (CO₂) into environmentally responsible and economically feasible products.

AOI-2. Carbon Dioxide Removal Technology

The objective of AOI-2 is to solicit applications that develop carbon dioxide removal (CDR) technologies (e.g., direct air capture with durable storage, biomass carbon removal and storage, enhanced mineralization, ocean-based CDR, terrestrial sequestration) to support progress towards achieving the U.S. Department of Energy's Carbon Negative Shot target economically feasible products.

AOI-3. Point Source Carbon Capture

The objective of AOI-3 is to solicit applications that are specifically focused on developing lower cost, highly-efficient, technologies for point source capture from fossil fuel power plants and industrial point sources.

AOI-4. Carbon Storage Technology

AOI-4 aims to support resource assessments to securely store large amounts of CO2.

FOA 2614 – Carbon Management

Round 3 Selections - Overview

AOI-3: Point Source Carbon Capture Technology

AOI-3 sought applications in support of developing lower cost, highly-efficient, technologies for point source carbon capture from fossil fuel power plants and industrial point sources capturing CO₂ with over 95% efficiency that is suitable for secure geologic carbon storage, including in situ mineralization or CO₂ conversion into long-lasting products (e.g., synthetic aggregates, concrete, durable carbon products).

7 selections

4 AOI-3A

1 AOI-3B

2 AOI-3C

AOI-3A

Test transformational carbon capture technologies under real flue gas conditions from process streams at an industrial facility, achieving ≥ 95% carbon capture efficiency and 95% CO₂ purity.

AOI-3B

Execute and complete FEED studies of commercial-scale, advanced carbon capture systems that separate CO_2 with $\geq 95\%$ capture efficiency at existing NGCC power plants.

AOI-3C

- (1) Test transformational, post-combustion, carbon capture technologies under real flue gas conditions from NGCC power plants achieving \geq 95% carbon capture efficiency and 95% CO₂ purity.
- (2) Demonstrate significant progress towards a 30% reduction in cost of capture versus a reference NGCC power plant with carbon capture for the same carbon capture efficiency (i.e., 95%).

FOA 2614 – Carbon Management

Round 3 Selections

Key Deliverables

NATIONAL ENERGY TECHNOLOGY LABORATORY

AOI-3:

- EH&S Risk Assessment: Due 90 days prior to project completion.
- **Technology Maturation Plan**: Initial TMP due 90 days after award; final TMP submitted 90 days prior to project completion.
- Project Management Plan: PMP update due 30 days after award.
 - Success criteria should be objective and stated in terms of specific, measurable, and repeatable data.
 Define success metrics for each budget period (BP).
 - Risk Management Plan: Updates should be provided as new risks are identified and/or as risks are retired.
- R&D Community Benefits Plan:
 - Specific, Measurable, Achievable, Relevant, and Timely (SMART) milestones: One per Budget Period.
 - Report on progress in quarterly and final reports.

AOI-3B Only:

- Life Cycle Analysis (LCA): Initial LCA is due 120 days after award and updated as needed throughout the project period of performance. A final LCA to be submitted 90 days prior to project completion.
- Business Case Analysis and Project Cost Estimate:
 Due 90 days prior to project completion.
- Initial Engineering Design Package: Due 180 days after award.
- Final Engineering Design Package: Due 90 days prior to project completion.

FOA 2614 – Carbon Management

Round 3 Selections

AOIs-3A and -3C Only:

Key Deliverables

Host Site Agreement: Due 6 months after project begins.

Techno-Economic Analysis: Initial TEA due 120 days after award and updated as needed throughout the project; final TEA submitted 90 days prior to project completion.

State Point Data Table: Final table due 90 days prior to project completion.

Other Project Requirements

Period of Performance:

- Up to 48 months with 4 Budget Periods
 - Exception for AOI-3C: if using existing carbon capture equipment at a test center such as NCCC, up to 36 months with 3 BPs

Success Metrics:

- Minimum of two months of steady-state testing at engineering scale
- Development of rigorous, first-principles, multi-scale, validated process models that include uncertainty quantification (UQ) that can be used to guide pilot scale test conditions

Emissions Measurements:

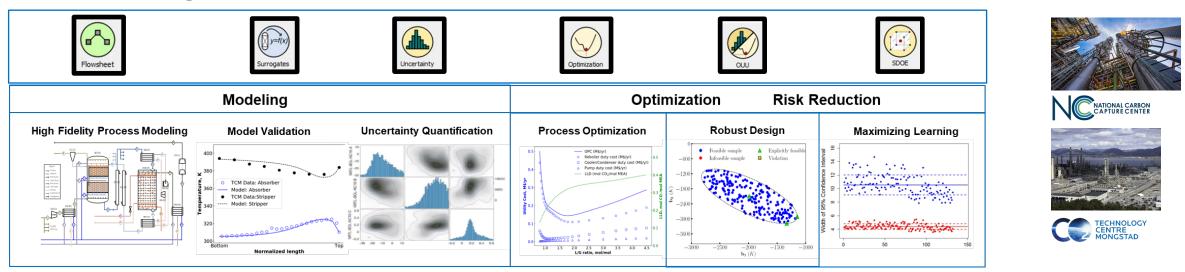
- Collection and reporting of the inlet and outlet criteria pollutants (e.g., NOx, SOx, PMs) and technology related emissions (e.g., solvent/sorbent losses and their degradation by-products) during the engineering-scale testing to assess the cobenefit emissions reduction of installing carbon capture technology
- Utilize NETL's mobile air emissions testing unit or collaborate with a third party for measuring emissions (e.g. nitrogen containing emissions, HAPs, aerosols).

Examination of Pilot Test Plan Requirements: Relevance of Uncertainty, High Capture, and Economics

Benjamin Omell¹

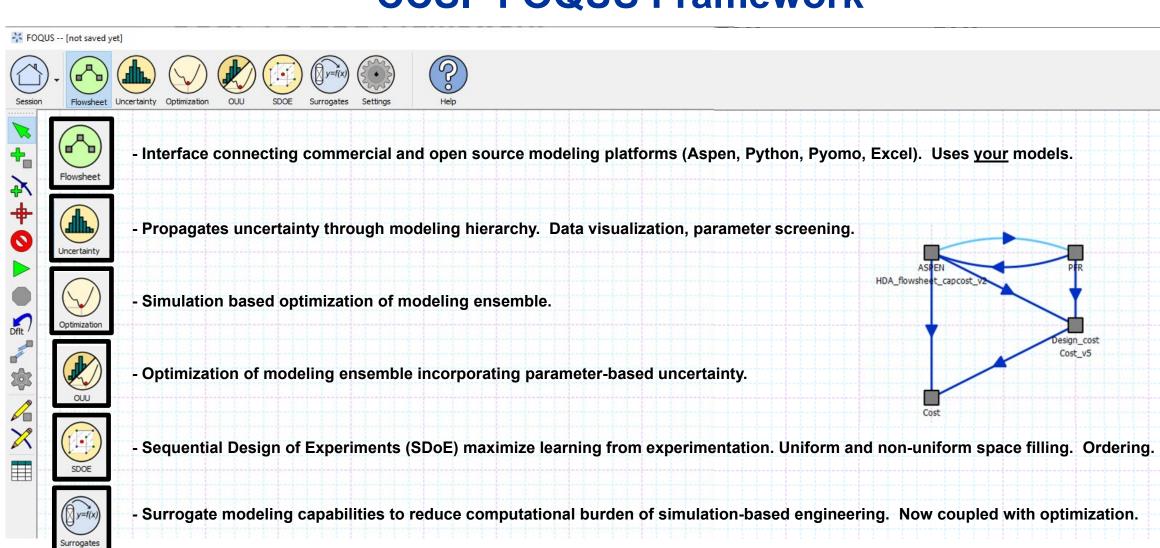
1. National Energy Technology Laboratory

Carbon Management Research Project Review Meeting Wednesday, August 7th, 2024


Validation of Models

- First principle process models are a key component in demonstrating risk reduction for process scale-up
- Model demonstration and validation at pilot scale is understood to be an important component of the FOA
- All pilots in 2614 Round 3 expected to develop and validate process models of their technology
 - Models do not have to be provided to NETL/FECM, however details of models and submodels, data sets, and validations will be examined
- CCSI² can provide support for model development, optimal DoE, uncertainty quantification and validation

Fossil Energy Involvement in Pilot Campaigns


Optimizing the Value of Industrial Collaboration

- Ensures an integrated modeling and testing framework demonstrated to eliminate years from scale up
- Underpins Sequential Design of Experiments (SDoE) for optimizing value of pilot test data
- Can save millions of dollars in test costs
- Minimizes commercial technology costs with rigorous, large-scale optimization
- Reducing uncertainty to increase confidence in commercialization of carbon capture technologies

CCSI² FOQUS Framework

Key Points

Standard Design of Experiments at Pilot Scale:

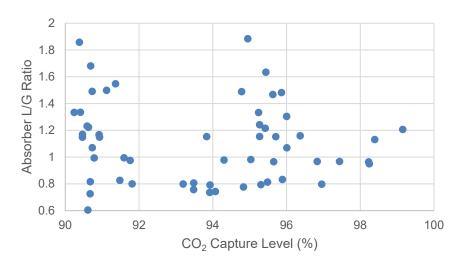
- Has unanticipated consequences
- Can be inefficient

Economic Modeling

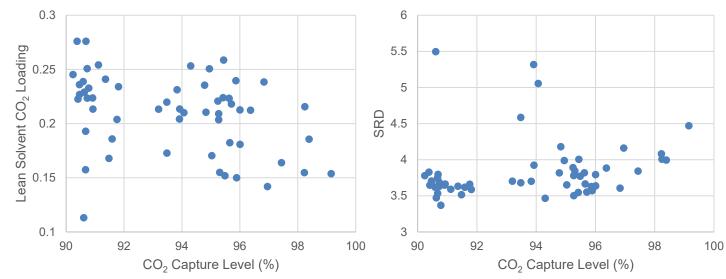
Supports guarantee of operation in commercially optimal scenarios

Uncertainty Should be Explicitly Considered

- Characterizes most impactful behavior
- Uncovers process improvement opportunities

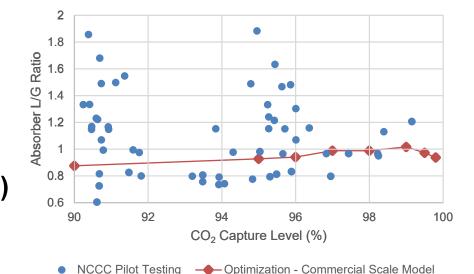

How to Implement the right test plan

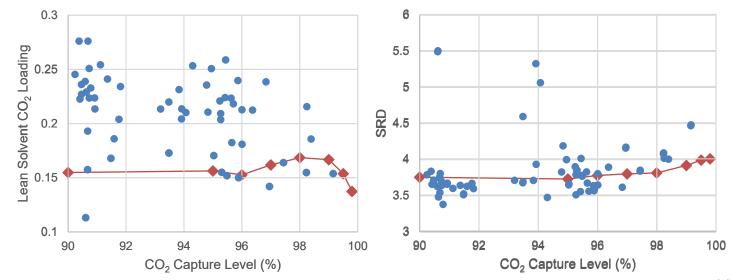
Activities, Data Requirements, Model Requirements, Schedule



High Capture Example: Considerations for Model Validations

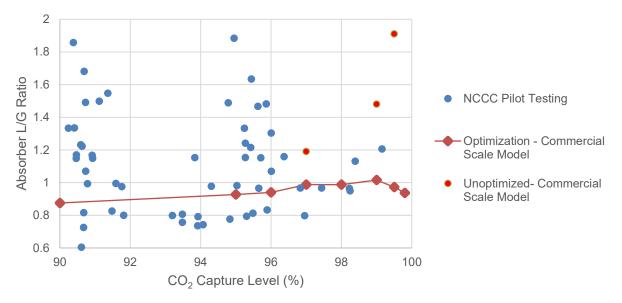
- 2022 NCCC Campaign that targeted high capture
 - 88 runs with NGCC conditions
 - Far more parametric runs than a normal campaign

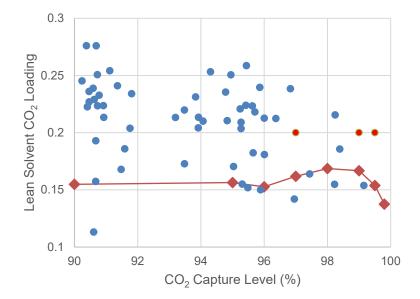

NCCC Pilot Testing

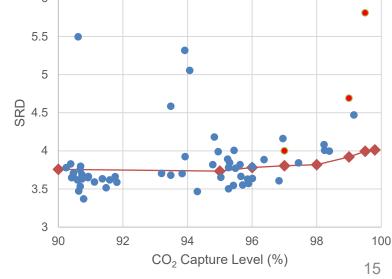


High Capture Example: Considerations for Model Validations

- 2022 NCCC Campaign that targeted high capture
 - 88 runs with NGCC conditions
 - Far more parametric runs than a normal campaign
 - Of those, 12 are close to optimal trend
 - Of those, 8 are 95% capture or above (<10%)
 - Only 99%+ case (past the reflection point) off the trend

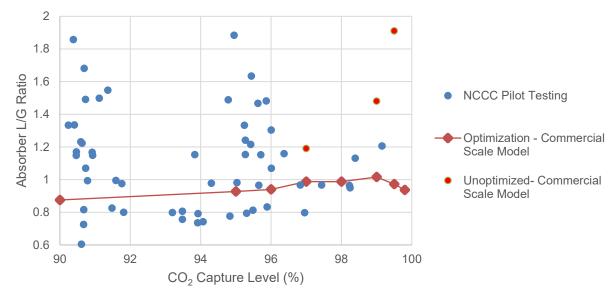

- High capture rates **not well** represented
- Optimal operation not well represented

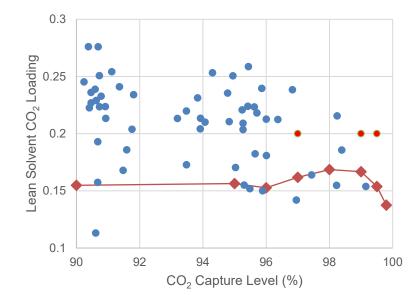


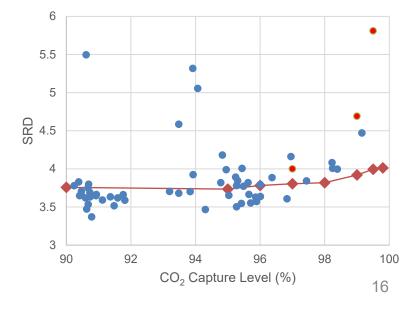


Economic Feasibility of Unoptimized Cases

Unoptimized Case Comparison (lean loading set at 0.2)				
% CO₂ Capture	97	99	99.5	
L/G (kg/kg)	1.19	1.48	1.91	
SRD (MJ/kg CO ₂)	4.00	4.69	5.81	
LCOE (\$/MW-hr)	73.37	76.18	80.16	
COAC (\$/tonne CO ₂)	90.50	96.63	107.77	
Incremental COAC (\$/tonne CO ₂)		341.45	1937.15	
Optimized Incremental COAC (\$/tonne CO₂)				

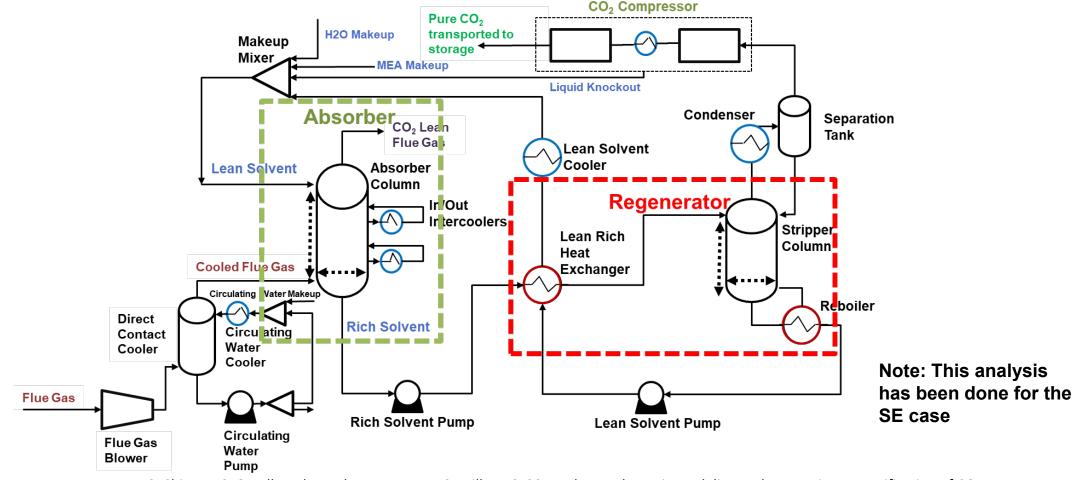



Economic Feasibility of Unoptimized Cases

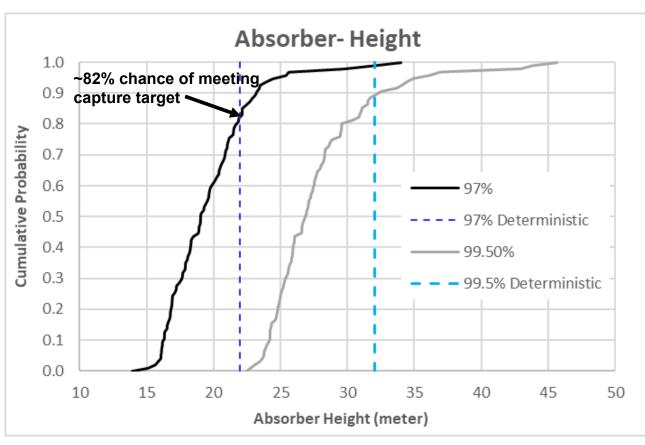

Unoptimized Case Comparison (lean loading set at 0.2)				
% CO ₂ Capture	97	99	99.5	
L/G (kg/kg)	1.19	1.48	1.91	
SRD (MJ/kg CO ₂)	4.00	4.69	5.81	
LCOE (\$/MW-hr)	73.37	76.18	80.16	
COAC (\$/tonne CO ₂)	90.50	96.63	107.77	
Incremental COAC (\$/tonne CO ₂)		341.45	1937.15	
Optimized Incremental COAC (\$/tonne CO ₂)		269.40	406.07	

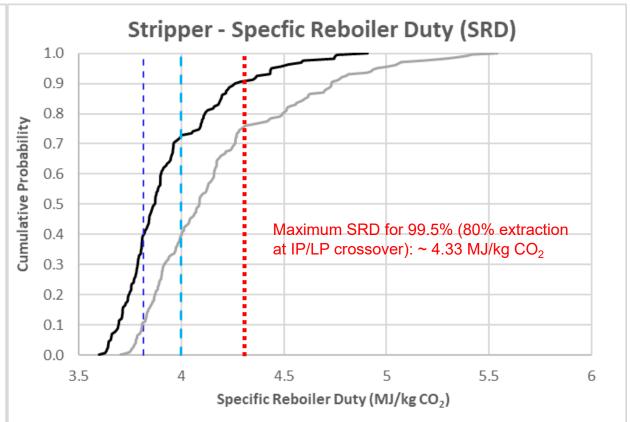
Incremental cost to achieve net-zero is almost x5

Models are important to determine test cases!



Uncertainty Analysis at 97% and 99.5% Capture

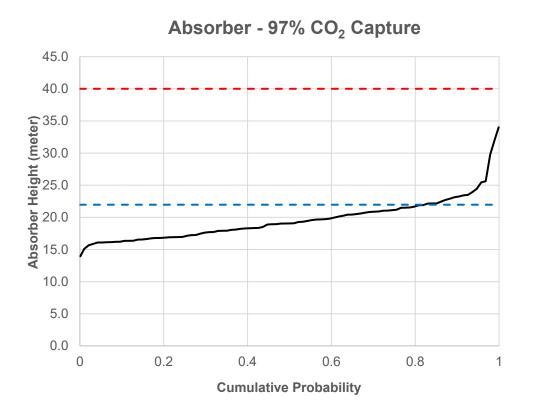

Thirteen parameters considered in the thermodynamic and mass transfer models, selected based on Sobol analysis^{1,2}

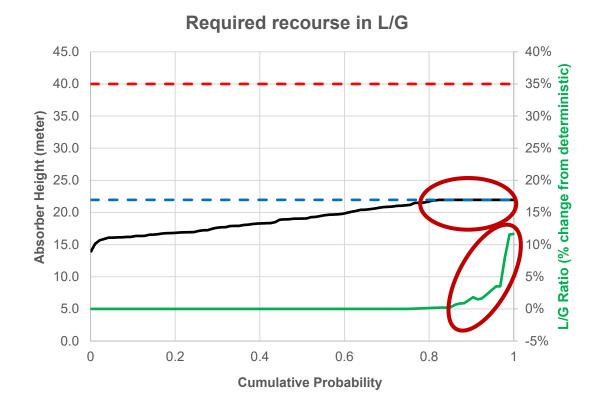


- L. Morgan JC, Chinen AS, Omell B, Bhattacharyya D, Tong C, Miller DC, 2017. Thermodynamic modeling and uncertainty quantification of CO₂-loaded aqueous MEA solutions. Chem. Eng. Sci. 168: 309-324.
- 2. Chinen AS, Morgan JC, Omell B, Bhattacharyya D, Tong C, Miller DC, 2018. Development of a rigorous modeling framework for solvent-based CO₂ capture. Part 1: hydraulic and mass transfer models and their uncertainty quantification. Ind. Eng. Chem. Res. 57: 10448-10463.

Uncertainty Analysis of Column Height and SRD

Thirteen parameters considered in the thermodynamic and mass transfer models, selected based on Sobol analysis^{1,2}





- Driven by mass transfer uncertainty
- Low risk of not meeting performance target

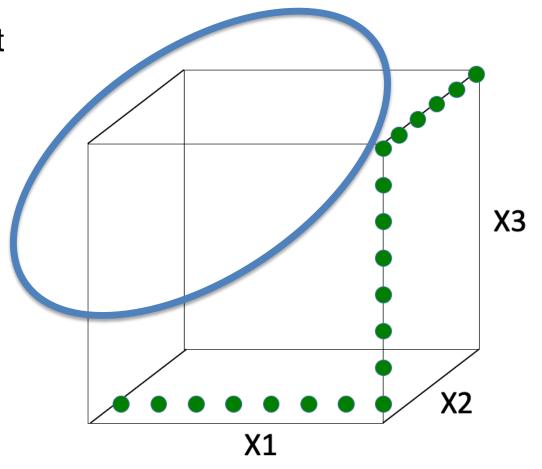
- Driven by thermodynamic uncertainty
- Higher risk of not meeting expected performance (similar in both cases as both use lower lean loadings)
- Steam extraction constraints provide less recourse
- Morgan JC, Chinen AS, Omell B, Bhattacharyya D, Tong C, Miller DC, 2017. Thermodynamic modeling and uncertainty quantification of CO₂-loaded aqueous MEA solutions. Chem. Eng. Sci. 168: 309-324.
- 2. Chinen AS, Morgan JC, Omell B, Bhattacharyya D, Tong C, Miller DC, 2018. Development of a rigorous modeling framework for solvent-based CO₂ capture. Part 1: hydraulic and mass transfer models and their uncertainty quantification. Ind. Eng. Chem. Res. 57: 10448-10463.

Additional Recourse for 97% Case

Blue dash – deterministic case Red dash – technical feasible height

- Deterministic design can achieve capture targets amidst uncertainty with a small increase in liquid flowrates (~2%-12%).
- Increase in L/G may have other impacts

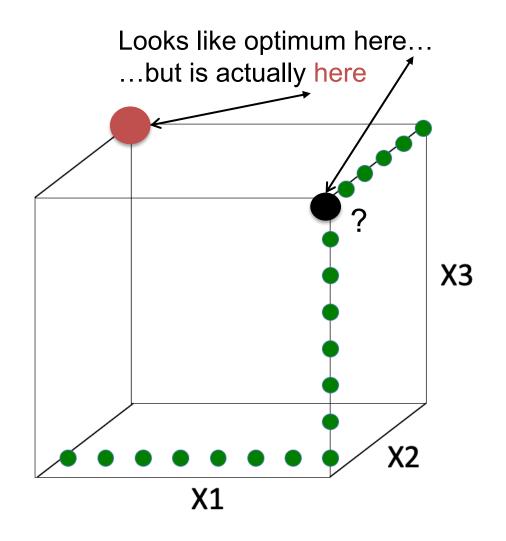
What is Design of Experiments (DoE)?


- Mathematical strategy for selecting input combinations
 - Compute output (computer experiment)
 - Operate system (physical experiment)
- Series of these experimental runs/tests forms experiment
 - Purposeful changes to inputs of process or system
 - Identify the reasons for any changes in output
- A well-designed experiment is critical
 - Results and conclusions depend on how the data is collected

Design of Experiments not the same as One-Factor-at-a-Time

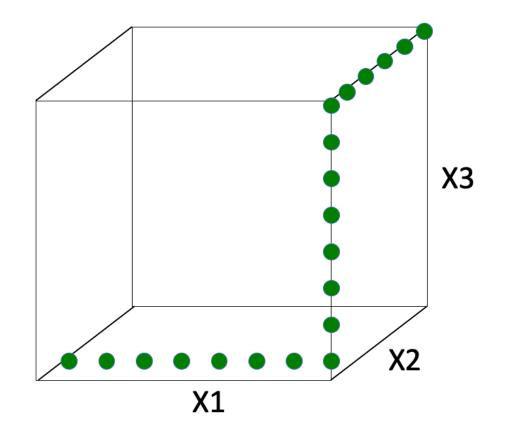
OFAAT strategy:

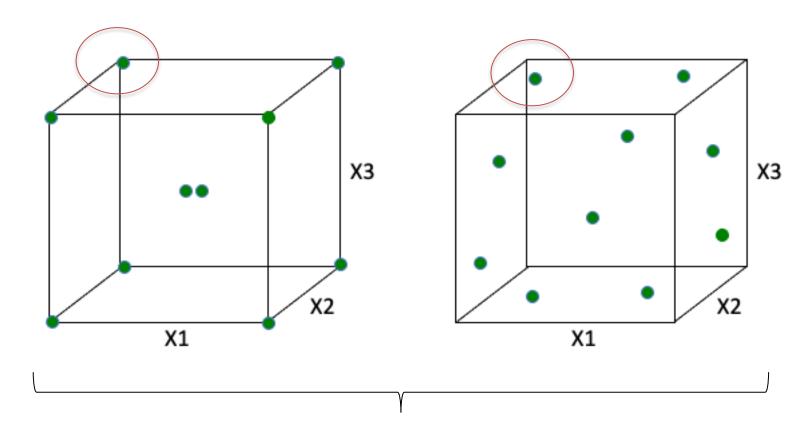
- Change only one input (factor) at a time
- Hold all others constant
- Inefficient use of budget
- Cannot identify interactions
 - Effect of one factor changes when another factor changes
 - Finding optimal operating conditions is unlikely

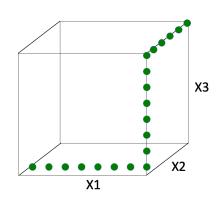


Design of Experiments not the same as One-Factor-at-a-Time

OFAAT strategy:


- Change only one input (factor) at a time
- Hold all others constant
- Inefficient use of budget
- Cannot identify interactions
 - Effect of one factor changes when another factor changes
 - Finding optimal operating conditions is unlikely


Design of Experiments not the same as One-Factor-at-a-Time


- OFAAT strategy:
 - Change only one input (factor) at a time
 - Hold all others constant
- Inefficient use of budget
- Cannot identify interactions
- Not randomized
 - Changing conditions can negatively affect the results

DoE Avoids These Drawbacks – Is Always More Efficient

Uses 20 runs

Two Different SDoE Approaches Each uses **10 runs**

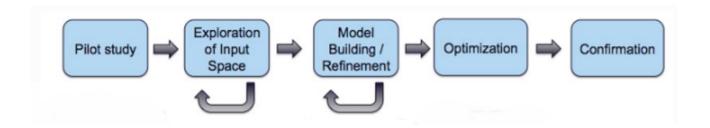
What Is DoE Used For?

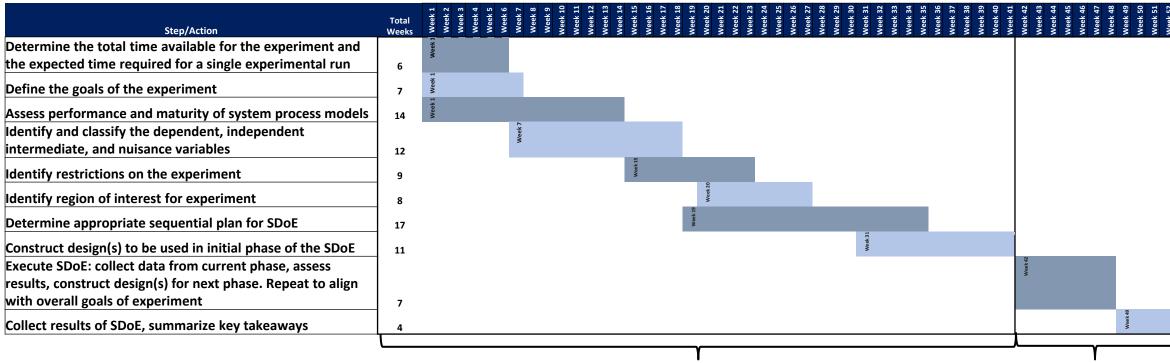
Development

- Evaluate and compare product configurations
- Evaluate material alternatives
- Determine parameters settings to work well under variable field conditions
- Determination parameters that impact product performance

Improvement

- Reduce variability
- Obtain closer conformance to target requirements
- Reduce development time
- Reduce overall costs


Why Use Statistically Designed Experiments?


- Extract maximum information with a fixed budget
 - Produces exceptionally high-quality data
- Can save years off pilot test schedule
- Proven track record from past applications
 - Over 25% reduction in model uncertainty
 - CO₂ Capture percentage within 3-6% with 95% confidence

Notional Gantt Chart for Designing Pilot Tests

Join us for the PSE+ Stakeholder Summit

September 18 & 19, 2024 in Pittsburgh, PA

Advanced PSE Stakeholder Summit and Technical Meeting 2024 - (idaes.org)

Multiscale Modeling & Optimization

Post-combustion Carbon Capture

Hybrid Energy Systems (completed)

Water Desalination

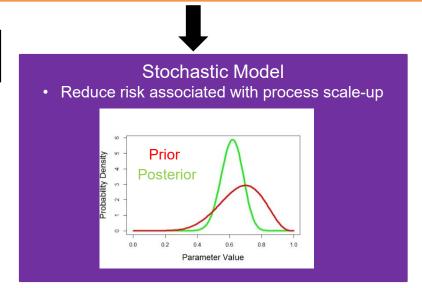
Critical Mineral & Material Recovery

https://www.acceleratecarboncapture.org/

Benjamin.Omell@netl.doe.gov

Disclaimer

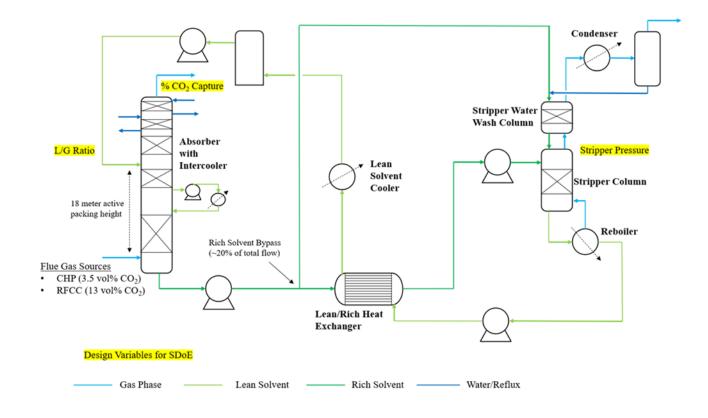
This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


Plan for CCSI² Contributions to Support of EPRI/ EEMPA Campaign

Initial Phase Process Model Refinement Plant start-up Achieve steady-state water loading **Solvent Circulation Solvent Capacity** CO₂ Capture Specific Reboiler Duty Phase 1 • Demonstrate 90% CO₂ capture for coal, natural **Model Parameters** gas flue gases Use designed experiments to strategically Mass Transfer manipulate chosen variables (e.g., solvent Interfacial Area circulation, stripper temperature)

Additional Phases

- Target high capture
- Minimize solvent regeneration energy
- Evaluate effect of solvent water content on CO₂ capture
- Investigate effect of flue gas flowrate and temperature
- · Analysis of metal vs. plastic packing

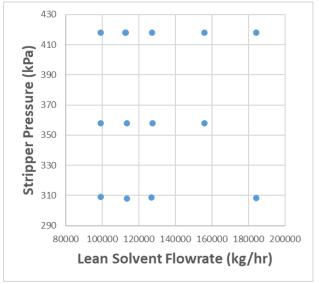

Sequential design of experiments (**SDoE**) enables direct incorporation of knowledge learned in previous stages for strategic data collection

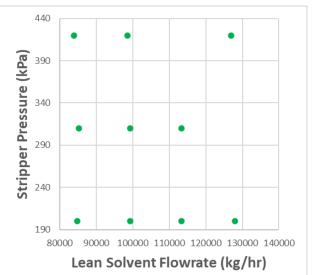
TCM Test Campaign for RTI NAS Solvent

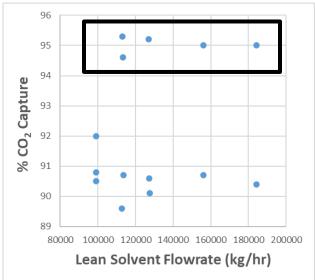
- Leveraged SDoE to guide NAS test campaign at TCM → focused on demonstrating high levels of CO₂ capture with low solvent emissions and regeneration energy requirement
- CCSI² team contributed separate designed experiments for gas-fired combined heat and power (CHP) [3.7 vol% CO₂] and residual fluidized catalytic cracker (RFCC) [13.5 vol% CO₂] flue gas sources
- Each designed experiment includes a series of test matrices with 12-22 proposed operating conditions for flexibility in design size

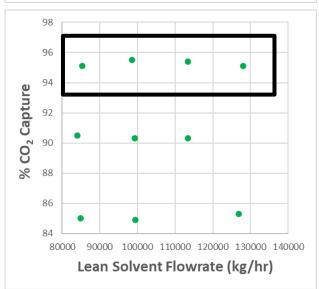
Design factors:

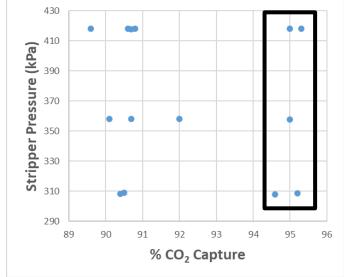
CO₂ Capture: 85 – 95%

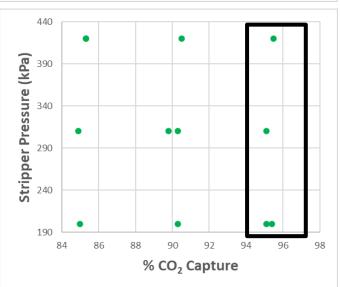

Absorber L/G Ratio: 2.5 – 6.5 kg/kg

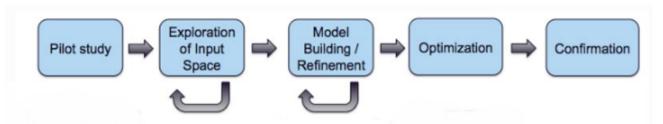

Stripper Pressure: 0.9 – 3.2 barg




SDoE Results – Data Collection at TCM

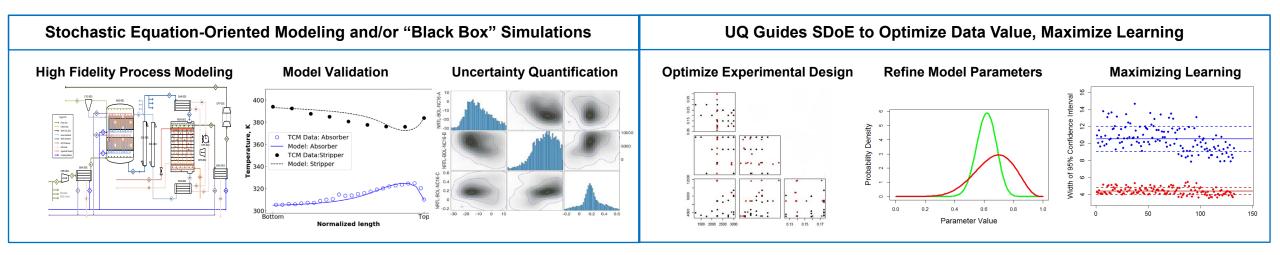

Data sets generated for SDoE demonstrate good coverage of operation space:

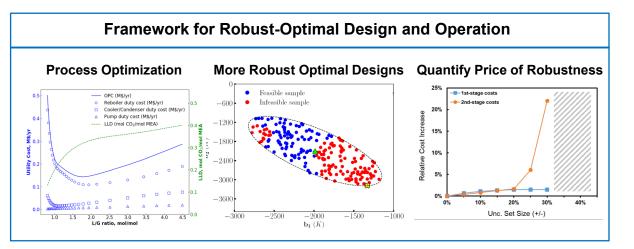



Characterization of parameter interactions through DoE → demonstrates multiple pathways to high capture levels based on the tradeoff between solvent circulation and CO₂ capacity

- Coal-based flue gas
- NGCC flue gas

Sequential Design of Experiments (SDoE)


- <u>Design of experiments (DOE)</u> is a powerful tool for accelerating learning by targeting maximally useful input combinations to match experiment goals
- <u>Sequential design of experiments (SDoE)</u> allows for incorporation of information from an experiment as it is being run, by updating selection criteria based on new information
- Specific algorithms can be tailored to match experimental goals. Options available in the CCSI Toolset include:
 - Uniform Space Filling (USF)
 - Non-Uniform Space Filling (NUSF)
 - Input-Response Space Filling (IRSF)
 - Robust Optimality-Based Design of Experiments (ODoE)
- Recommended to run experiments in phases to take advantage of SDoE capabilities and customize test designs to meet expected project outcomes



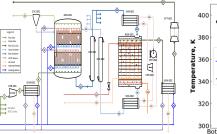
Detailed discussion on SDoE:

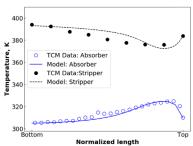
- •Uncertainty Quantification (UQ) provides a modeling framework for characterizing epistemic uncertainty essential for understanding scale-up risk
- •Sequential Design of Experiments (SDoE) techniques enable reduction of uncertainty through strategic collection of process data to maximize learning from pilot test campaigns
- •Robust Optimization (RO) framework quantifies cost of accommodating uncertainty in designs ensured to meet performance targets (with a chosen confidence level)

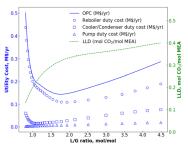
CCSI² – Modeling, Optimization and Technical Risk Reduction

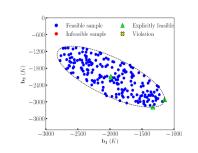
Multi-lab modeling initiative to support carbon capture technology development

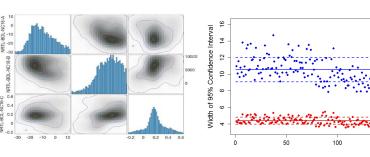
Maximizing Learning

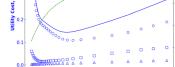





High Fidelity Process Modeling


Model Validation

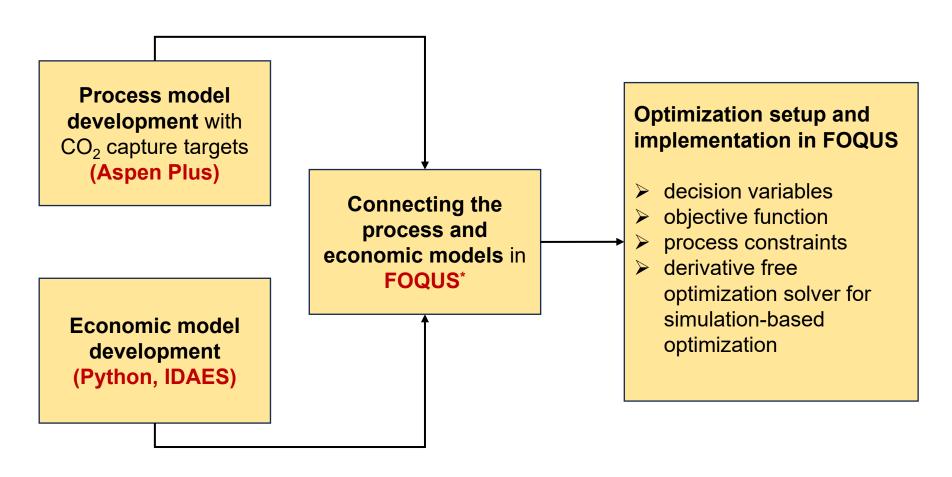

Process Optimization



Robust Design

Uncertainty Quantification

github.com/IDAES/idaes-pse



Objective

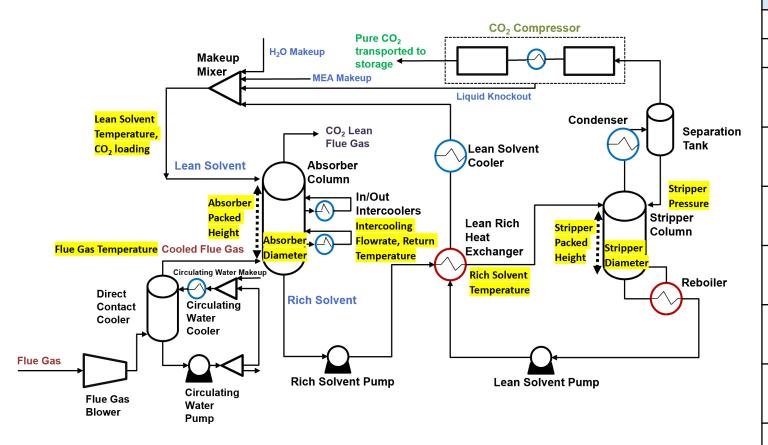
- Understand high capture process variables important for optimization
- Characterize optimal capture costs and their rate of increase as capture demands rise
- Assess usefulness of pilot data for model validation
- Quantify effects of model uncertainty
- Explore means to accommodate uncertainty

CCSI² Techno-Economic Optimization Framework

^{*} Framework for Optimization and Quantification of Uncertainty and Surrogates Open Source: github.com/CCSI-Toolset/FOQUS

Optimization Cases

Case Name	CO ₂ Capture Solvent	Steam Source for solvent regeneration	CO ₂ Capture Levels (%)	Steam extracted from the IP/LP steam turbine crossover Flue Gas (In) HRSG Flue Gas (Output Description of the IP/LP steam S
SE	MEA	Steam extraction from NGCC steam cycle	Discrete levels between 90% – 99.8%	HP Turbine Water cooled condenser Auxiliary boiler: No steam extraction from the NGCC steam cycle
AB		Natural gas fired auxiliary boiler		

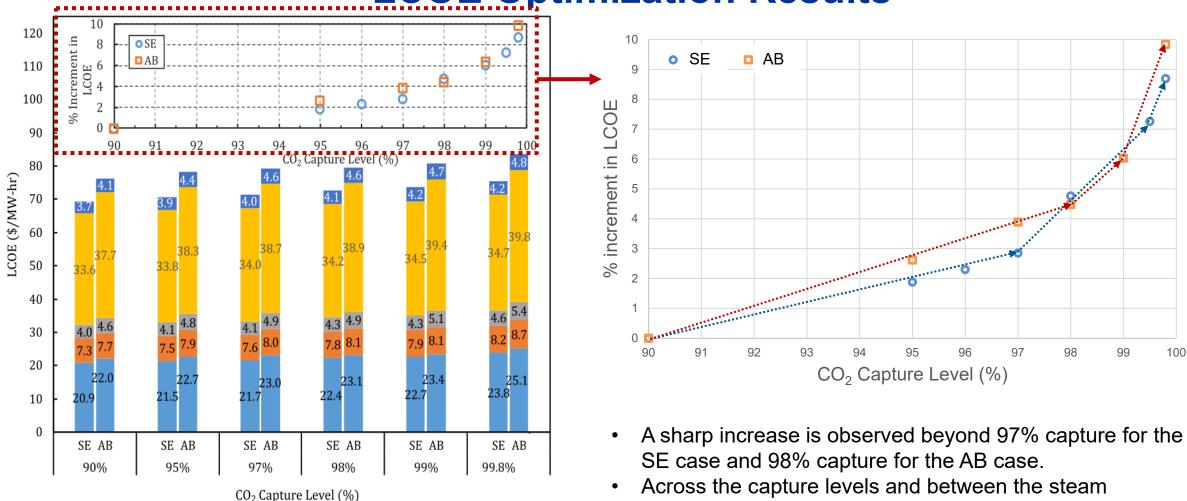


the IP/LP steam

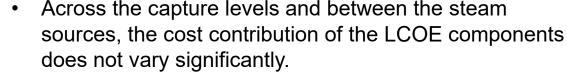
Flue Gas (Out)

Turbine

Optimization Decision Variables



Decision Variables for Optimization Problem


|--|

variables						
Unit	Range					
meter	12 - 20					
meter	20 - 45					
$\frac{\text{mol CO}_2}{\text{mol MEA}}$	0.1 - 0.25					
°C	25 - 45					
°C	25 - 45					
mass flow IC#1 mass flow lean solvent	1e-5 - 1					
mass flow IC#2 mass flow lean solvent	1e-5 - 1					
°C	25 - 45					
°C	90 - 115					
meter	4 - 15					
meter	3 - 10					
kPa	170 - 230					
°C	25 - 45					
	meter mol CO2 mol MEA °C °C mass flow IC#1 mass flow lean solvent mass flow lean solvent c c c meter meter kPa					

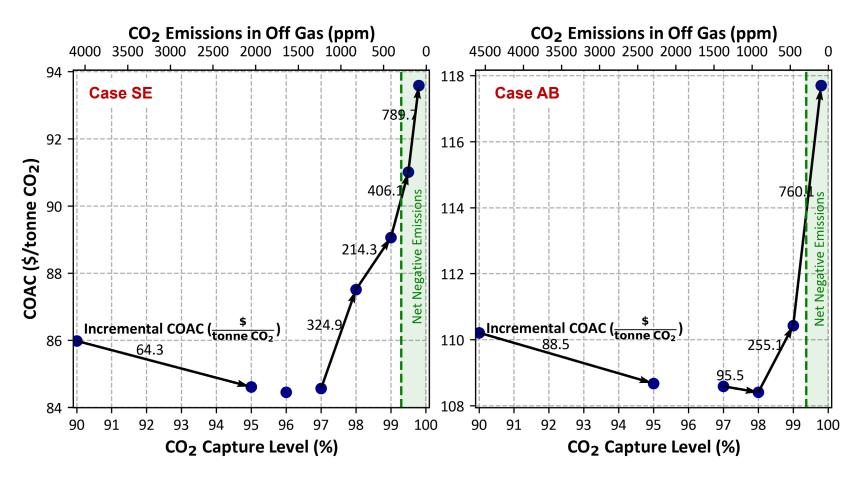
LCOE Optimization Results

■ Levelized Variable O&M Cost

Levelized Capital Cost

Levelized Fuel Cost

SE: MEA with steam extraction AB: MEA with auxiliary boiler


■ Levelized Fixed O&M Cost

■ Levelized CO₂ Transport Cost

99

100

Optimum Cost of Avoided Carbon (COAC)

- COAC has an optimal value near 96% capture.
- Incremental COAC is the change in LCOE wrt the change in CO₂ footprint

$$\begin{array}{l} \Delta COAC[i+\Delta i] = \\ \underline{LCOE[i+\Delta i] - LCOE[i]} \\ \underline{CO_2 \ Emissions[i]} \\ \underline{Plant \ Net \ Power[i]} \\ \end{array} \begin{array}{l} \underline{CO_2 \ Emissions[i+\Delta i]} \\ \underline{Plant \ Net \ Power[i+\Delta i]} \end{array}$$

 Incremental COAC between capture levels increases exponentially above 97% and 98% CO₂ capture for case SE, and AB respectively

SE: MEA with steam extraction AB: MEA with auxiliary boiler

Conclusions

- CCSI Toolset provides useful framework for optimizing numerous designs through coupling of costing models and process models
- Inflection point in cost of capture occurs past 98% for MEA
- Designs can fail with expected realizations of uncertain parameters
- Recourse strategies can handle much of the uncertainty, but require insights gained via computational analyses
- Full techno-economic modeling frameworks support the test data generation of highest value

Acknowledgements

Benjamin Omell

David Miller

Tony Burgard

Indra Bhattacharya

Josh Morgan

Brandon Paul (*)

Katie Hedrick (*)

Anca Ostace (*)

Miguel Zamarripa (*)

Daison Yancy Caballero (*)

Sally Homsy

Norma Kuehn (*)

Alex Zoelle (*)

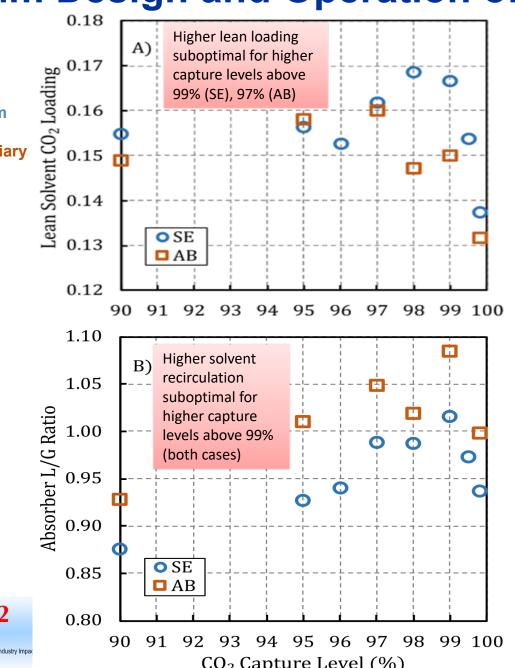
Mike Matuszewski (*)

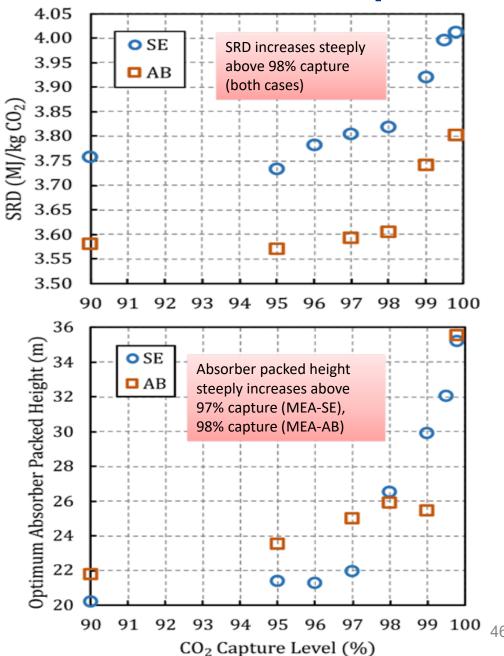
(*) NETL Support Contractor

The authors graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy and Carbon Management, through the Carbon Capture Program.

Disclaimer

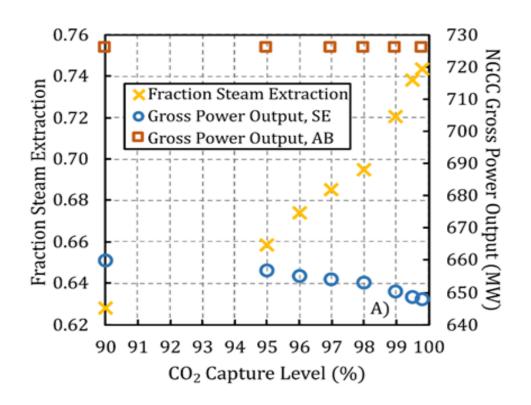
This project was funded by the Department of Energy, National Energy Technology Laboratory an agency of the United States Government, through a support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.




Optimum Design and Operation of CCS Unit – Case Comparison

SE: MEA with steam extraction

AB: MEA with auxiliary


boiler

Performance of NGCC at Optimum CCS Conditions

- Optimum steam extraction in the SE case increases by 17% across the capture levels NGCC Gross Power reduces by 1.8%.
- No steam extraction in the AB case NGCC Gross Power remains constant—72 MW (on average) higher than SE.
- NGCC Net Power reduces in both cases across capture levels (combined effect of steam extraction and increasing auxiliary load).

Economic Model: NGCC Solvent-based CCS System

- Developed in Python using the IDAES Costing Framework¹
- Key Inputs:
 - Resources and Chemicals: Natural gas flowrate, solvent initial fill and makeup rate, etc.
 - Design Conditions: Absorber and stripper column size, heat exchanger surface area
 - Operating Conditions: Flue gas flowrate, solvent circulation rate, CO₂ capture rate
 - Performance Indicators: Heat exchanger duties; power requirement for blowers, pumps, and compressors
- Key Outputs: Economic Evaluation Metrics
 - Total Plant Cost (Million \$): NGCC plant, CCS equipment, and full system
 - Levelized Cost of Electricity (\$/MW-hr): Amount of revenue required per net megawatt-hour during the power plant's operational life to meet all capital and operational costs²
 - Cost of CO₂ Captured (\$/tonne CO₂): Minimum CO₂ plant gate sales price that will incentivize carbon capture relative to a defined reference non-capture plant²
 - Cost of CO₂ Avoided (COAC) (\$/tonne CO₂): Minimum CO₂ emissions price that will incentivize carbon capture relative to a defined reference non-capture plant²

^[2] National Energy Technology Laboratory, "Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Revision 4a," US DOE, Pittsburgh, PA, 2022.

^[1] IDAES online documentation: https://idaes-pse.readthedocs.io/en/latest/index.html