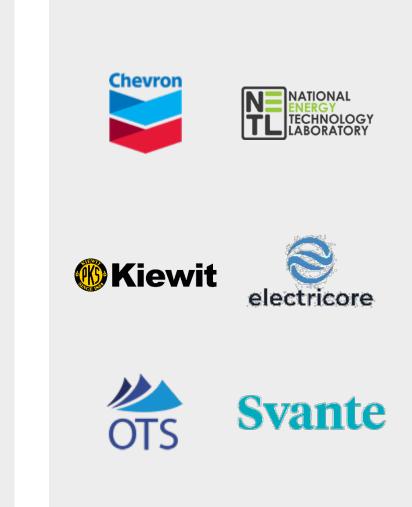

Chevron natural gas carbon capture technology testing project Cooperative Agreement No. DE-FE0031944

Project overview

Award Period

• 10/01/2020 through 08/30/2024

Project Funding

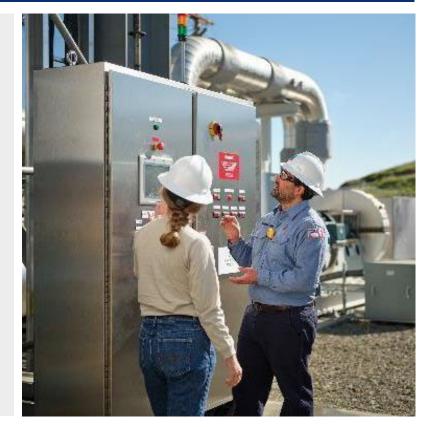

- Total Funding: \$23,417,307
- Federal Funding: \$13,000,000.00
- Cost Share Funding: \$10,417,307 (Cash Contribution by Chevron)

Project Participants

- Chevron U.S.A. Inc., Prime Contractor, host site and cost share provider
 - Principal Investigator: Scott McLemore
 - Project Manager: Stan Cross
- Technology Provider: Svante, Inc.
- ISBL Engineering, Procurement and Construction: Kiewit Engineering Group Inc (KEGI) and Kiewit Power Constructors (KPC)
- Program Administrator: Electricore, Inc.
- Plant Operation and Maintenance: Offshore Technology Services (OTS)

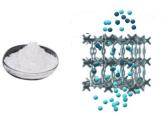
DOE-NETL Team

 Grants Officer: Lisa Kuzniar, Project Manager: Nicole Shamitko-Klingensmith, Contracting Specialist: Kelly Haught



Project objectives

The project validated Svante's transformational solid sorbent-based carbon capture technology at an engineering scale under indicative natural gas flue gas conditions and continuous long-term operation at Chevron's Kern River oil field.

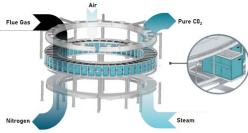

- Successfully completed the design, construction, commissioning, and longterm testing of an engineering-scale capture plant of approximately 25 tonnes per day (TPD) under steady-state conditions at varying flue gas carbon dioxide (CO₂) concentrations (~4–14%);
- Conducted a techno-economic analysis (TEA) on Svante's VeloxoTherm[™] capture cycle as integrated into a nominal 550 MW (net) natural gas combined cycle (NGCC) power plant;
- Conducted a comprehensive gap analysis addressing the current stage of VeloxoTherm[™] technology development for NGCC applications; and
- Summarize the research, development, and demonstration requirements to close identified gaps and approach the achievement of DOE's carbon capture performance goal of CO₂ capture with 95% CO₂ purity at a cost of \$30/tonne of CO₂ captured by 2030.

The Svante Carbon Capture Ecosystem

Scalable and Flexible

1. Solid Sorbents (MOFs)

Engineered to have high selectivity over water and N_2 and a high capacity for $C\!O_2.$



Nanoengineered Carbon Capture Filters

Solid sorbents are laid onto thin sheets of film and stacked to create a filter.

2. Contactor with Filters Inside

Robust machine design, Full-size prototype "Buck" in-house validation tests ongoing.

3. Performance and Lifetime VeloxoTherm[™] Rapid Temperature Swing Adsorption (RTSA) Cycle boasts

and validated KPIs at demo units.

4. Carbon Capture Plant

The overall design, integration, and optimization of the entire CO_2 capture plant that goes around the machine and process cycle.

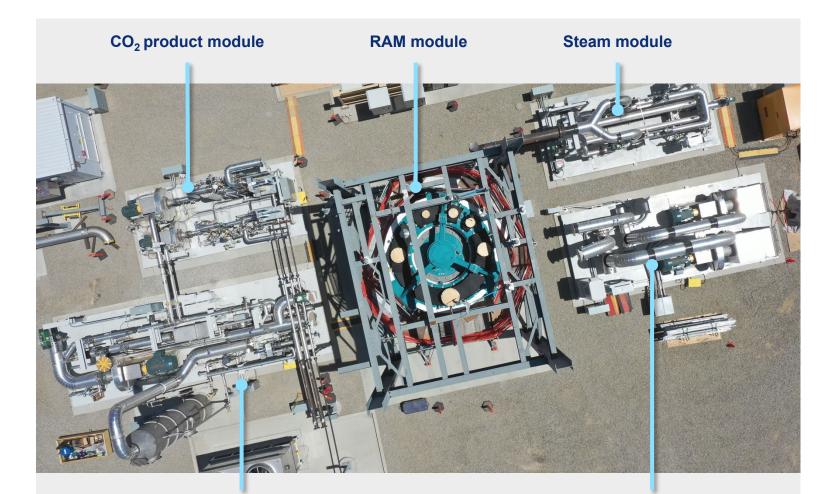
Svante Technology Comparison

Novel Benefits Compared to Conventional

	Svante's Solid Adsorbent	System comparison
Technology Description	 Separation relies on adsorption of CO₂ onto a solid surface Regenerated using direct steam in an intensified temperature/concentration swing process that enables very rapid cycles 	
Modularization and Scalability	Adaptable and cost efficient at all scales due to the repeatability of the modular design	
Ability to Deal with Intermittency of Emitters	High – rapid cycle speed	
Toxic Fugitive Emissions	None – solid sorbent	
Capital Intensity	Low – modular construction	
Potential for Further Cost Reduction	New solid-state technology poised for significant cost reduction learning curve	Svante's SolidConventional CarbonAdsorbent TechnologyCapture TechnologyUsing Liquid Solvents

Kern River carbon capture plant

facility overview and objectives


San Joaquin Valley, CA USA
Natural gas-based
flue gas testing

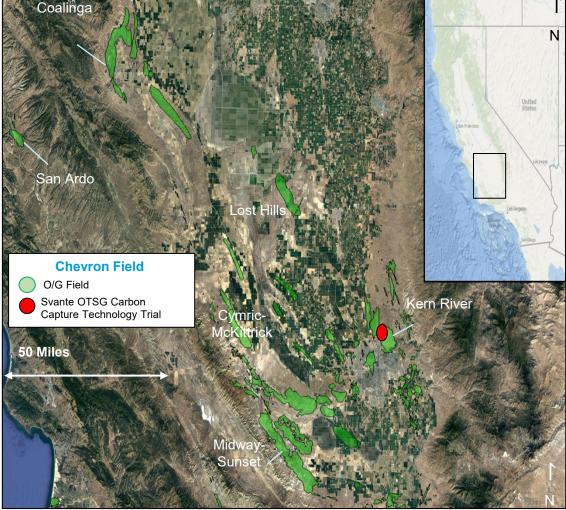
Understand and measure capture plant performance on boiler, NGCC and SMR feed flue gas

Skid-mounted modular design carbon capture plant

New metallic organic framework (MOF) sorbent beds

95% CO₂ product purity and lower steam ratio compared to conventional solvent technology

Flue gas module

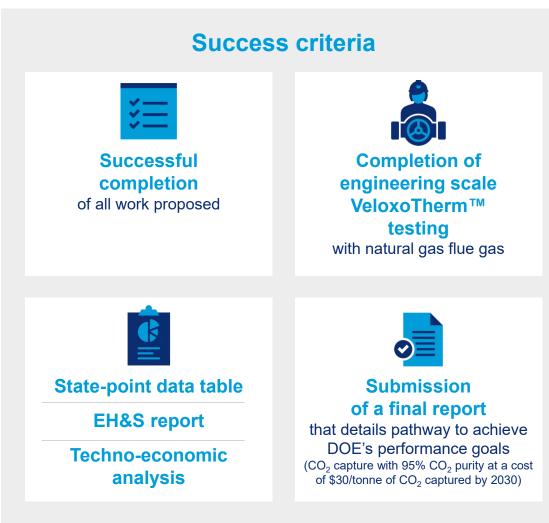

Conditioning module

Project location — Kern River Oilfield

Reducing the carbon intensity of our operations through scalable demonstration projects

Technical approach

This project is conducted over three (3) budget periods


- ☑ Budget Period 1
 - Process Engineering
 - ☑ Design Criteria
 - Sorbent Certification

Budget Period 2

- Detailed Engineering
- ☑ Procurement, Fabrication and Installation
- Pre-Startup Safety Review, Commissioning and Test Planning

Budget Period 3

- ☑ Engineering Scale Testing and Analysis
- Technology Assessment (In Progress)

Progress and Current Status

List of testing completed

- 1. 14% Indicative Coal Flue Gas Feed Testing
- 2. 4% Indicative NGCC Flue Gas Feed Testing
- 3. Base Performance and Steady State Testing
- 4. Load Following & Intermittence Testing

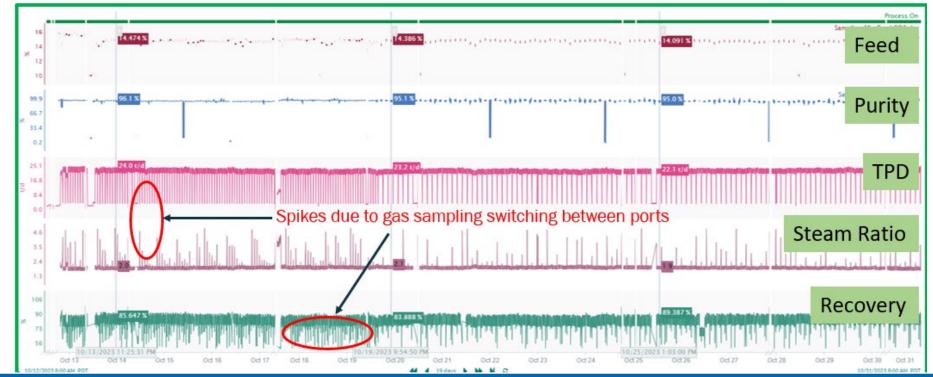
Key Summary of Tests

Stable operation over the duration of each test case; KPIs remain flat, no significant change

BOP limitation impacted data gathering & achievement of project set KPIs; reverified after modification

Load following responded as anticipated – 60 sec. cycle for Adsorption/Desorption/Conditioning

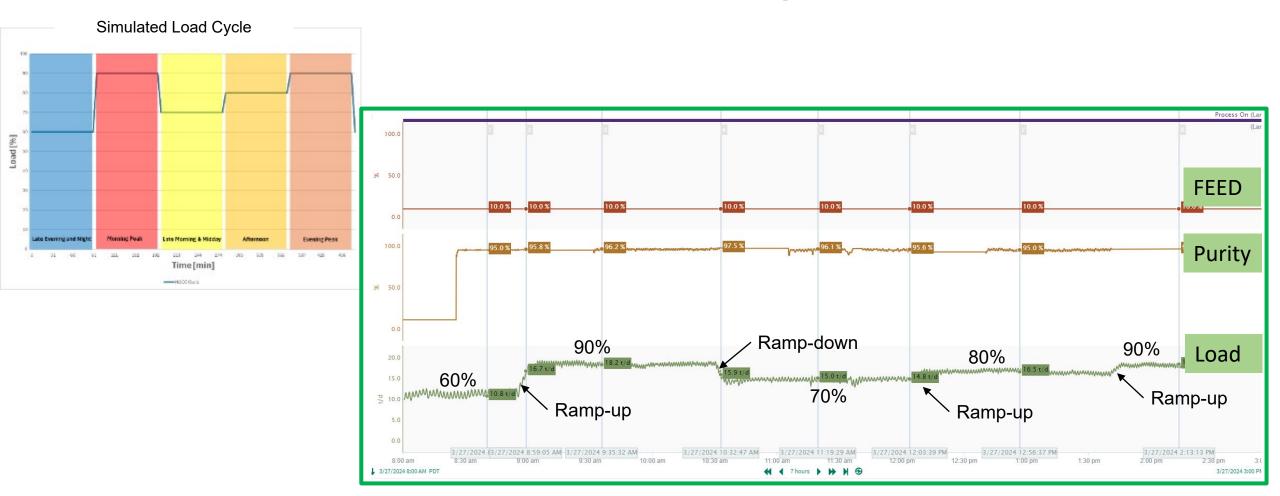
Progress and current status of project



Progress and Current Status of Project

Test Data – Performance Target vs Actual Data (14% CO₂)

PRIMARY PERFORMANCE TARGETS


		Indicative Coal	Actual (~ 725 hrs.)	Gap
Capture Plant Inlet Flue Gas CO ₂ Concentration	dry mol%	~ 14%	14% - 15%	
Product CO ₂ Purity	dry mol%	95	95	
CO ₂ Capture Recovery	%	85	~ 83	SAB/SAB VariabilityAsynchronous data logging used in Recovery calculation
Steam:Product CO ₂ Ratio	kg/kg CO ₂	1.8	1.8 - 2.1	Pinched by Product vacuum level (-7 kPag vs15 kPag target)Pinched by Reflux flow/vacuum level
CO ₂ Production Capacity	TPD	23 - 24	21 - 24	Pinched by Reflux loop and stable boiler operation at rated condition

Progress and Current Status of Project

Test Data – Simulate Load Following at 60%-90%

- Product purity maintained at 95% through out simulated load following; 5 minutes ramp
- 60 seconds response time for Svante's adsorption/desorption/conditioning process

Project Milestones – Budget Period 3

		Mi	ilestone log		
Budget period	Task	Milestone description	Planned completion date	Actual completion date	Verification method
3	7.1	Start-up and operator hand-off	08/21/2023	8/20/2023	RPPR File
3	7.2	Parametric testing and steady state operation performance report	02/06/2024	4/12/2024	Updated Test Report
3	7.3	14% Indicative Coal Flue Gas Feed Testing	11/30/2023	10/31/2023	Preliminary Test Report
3	7.4	4% Indicative NGCC Flue Gas Feed Testing	12/22/2023	11/23/2023	Updated Test Report
3	7.6	System Decommissioning	TBD		Final Report file
3	8.1	Technology EH&S Risk Assessment	TBD		Topical Report and summary in Final Report
3	8.2	Techno-Economic Analysis (TEA)	TBD		Topical Report and summary in Final Report
3	8.3	State-Point Data Table	07/30/2024		State-Point Data Table file
3	1.0	Draft Final Report	07/30/2024		Final Report file

Lessons Learned

- Validated Svante's MOF filters & Carbon Capture process @ Engineering Scale Pilot
- 95% CO2 product purity was achieved
- Load following responded as anticipated 60 sec. cycle for Adsorption/Desorption/Conditioning
- Ease of operation start-up, steady state and shutdown
- BOP limitation impacted data gathering & achievement of project set KPIs

Commercial Scale Facilities and Manufacturing Plans for Future Testing/Development/Commercialization

Next Steps for this Project

- Leverage early learnings to increase operational efficiently of the existing facility and validate data gathered against original target KPIs
 - Modify balance of plant equipment to increase vacuum and throughput
 - Extend operating period of BP3 to allowed for additional data collection at varying concentrations
 - Provided original and validated data in final reports and TEA
- Formal proposal on this opportunity has been provided and will provide updates once approval is given

Svante's Pathway to Commercial Readiness

Acceleration of learnings in development of industrial solutions

1. Production: Solid Sorbent-Lined Filters	2. Design: Industrial Contactor (Carbon Capture Machine)	3. Testing & Optimizations: Tracking, Measuring & Optimizing Performance	4. Plant: Carbon capture plant design
Commercial supply of solid sorbent (MOF) via BASF	In-house operation of full- sized industrial contactor	Rapid temperature swing adsorption (RTSA) cycle optimization & enhancements	Optimized for waste heat recovery and integration with industrial host site (brownfield and greenfield).
Filter manufacturing facility starting up in 2025	Continuous improvement and optimization of seal material	Validation of KPIs via in-house and external units	
= Completed	In Progress		

Chevro

Building Commercial Momentum

Svante to Deploy First-of-a-Kind Commercial-Scale Carbon Capture Plant at Delek US's Texas Refinery with DOE Support

PRESS RELEASES

Selected for Award by the US DOE for up to \$95 MM USD of funding for a 145,000 tonne/yr CO_2 capture project from a Fluid Catalytic Cracker at Delek US's Big Spring Refinery

Climeworks and Svante Collaborate in Development and Supply for Direct Air Capture

PRESS RELEASES

This collaboration enables Svante to begin filter production from its commercial manufacturing facility in 2025 – Climeworks is a partner in the Project Cypress DAC Hub, which has been selected for \$650 MM USD funding by the US DOE for a 1 megatons per year FOAK DAC.

Filter Manufacturing Plant No. 1 in Canada

New HQ & Global Center of Excellence Combined Manufacturing and R&D Centers	Production Line Sustainability & Net- Automation Zero Building Targets
Sq. ft	141,000
Staff	300
Throughput	10+ mmtpa CO ₂ equivalent (in industrial filters)

Summary

Technology Assessment

Chevron will compile and analyze the experimental and computational results to assess technology performance and propose next steps in the technology development pathway. Final deliverables include:

- Technology Environment, Health and Safety (EH&S) Risk Assessment
- Techno-Economic Analysis (TEA)
- State-Point Data Table
- Technology Maturation Plan (TMP)
- Final Technical Report

Thank you

Thank you to our project sponsors

U.S. Department of Energy

Office of Fossil Energy and Carbon Management

NETL – National Energy Technology Laboratory Grants Officer Lisa Kuzniar

Program Manager Nicole Shamitko-Klingensmith

> Contract Specialist Kelly Haught

Fossil Energy and Carbon Management

Acknowledgment and Disclaimer

- Acknowledgment: "This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0031944."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Questions and answers

8

00

© 2023 Chevron

CO₂