Net-zero Flexible Power Project Review Meeting - Summary and Key Findings

> **Sara Hamilton (Fellow) 2024 FECM / NETL Carbon Management Research Project Review Meeting August 7th, 2024**

Fossil Energy and Carbon Management

PSC Strategic Vision

Support demonstration of first-of-a-kind carbon capture on power and industrial sectors coupled to dedicated and reliable carbon storage, that will lead to commercially viable carbon hub opportunities for widescale deployment and facilitate a carbon-free economy by 2050, emphasizing robust analysis of life cycle impacts, and understanding air/water quality impacts.

 $CO₂$ Conversion into durable Products

Focus Area 1: Support Power Retrofit Demos

o Enabling technologies

Focus Area 2: Net Zero, Flex Power

- o Technology development to support flexible CCS with high capture efficiency
- \circ FFEDs to seed the formation of Carbon Hubs.

Focus Area 3: Support Industrial Retrofit Demos

o Enabling technologies

Focus Area 4: Integrated decarbonized industrial + CCS

- o Technology developmentfor integrated decarbonized industrial processes coupled with transformational CCS
- FEEDs to seed the formation of Carbon Hubs.

Motivation: CCS in future electricity systems

As the penetration of intermittent renewables in the grid increases, the **capacity factor of NGCC will decrease** and **frequency of start-up and shut-down events of power plants with CCS will increase**

Flexible CCS needed: the existing paradigm that CCS is a technology intended for steady state operation is being challenged for both electric generation and industrial applications

Fossil Energy and Carbon Management

Mills et al. *Impacts of variable renewable energy on wholesale markets and generating assets in*

3 *the United States.* Renewable and Sustainable Energy Reviews 120 (2020)

Motivation: CCS in future electricity systems

Need to achieve high integrated CO₂ capture rates to achieve net-zero targets

• Distinguish between the instantaneous Degree of Capture (DoC) and the Integrated Degree of Capture (IDoC)

$$
DoC = 100 \left(\frac{CO_2^{Generaled} - CO_2^{Emitted}}{CO_2^{Generaled}} \right) \qquad \qquad IDoC = \int_{t_0}^{t_f} DoCdt
$$

Degree of Capture _{Duty Cycle} = f (Capture Rate_{steady state}, Flexibility)

Challenge of Net-Zero Flexible Power: Flexible CCS with High Integrated CO₂ Capture Rates

Challenge of Net-Zero Flexible Power: Flexible CCS with High Integrated CO₂ Capture Rates

Fossil Energy and Carbon Management IEAGHG*. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Station with CO2 Capture* (2022)

How to achieve CO₂ high capture rates?

(+) achievable, (-) not achievable *technically achievable with higher selectivity *Adapted from IEAGHG (2019)*

Fossil Energy and Carbon Management IEAGHG. *Towards zero emissions CCS in power plants using high capture rates or biomass* (2019)

- Capture rates above 95% technically feasible for capture from power and industrial sources of $CO₂$ (solvent PCC)
- The economical feasibility at high capture rates varies by technology and $CO₂$ concentration. Marginal cost of capture can be used to evaluate technology cost competitiveness relative to CDR

Data for Capture Cost 30 wt. % MEA

Fossil Energy and Carbon Management

Brandl et al. *Beyond 90% capture: Possible, but at what cost?* International Journal of Greenhouse Gas Control 105 (2021)

Demonstrating Net-Zero Flexible Power

Adapted from Mai Bui, U.S. DOE Net-zero Flexible Power: High Capture Rate Project Review Meeting, 6th June 2024

Brandl et al. *Beyond 90% capture: Possible, but at what cost?* International Journal of Greenhouse Gas Control (2021) Bui et al. Demonstrating flexible operation of the Technology Centre Mongstad CO₂ capture plant. International Journal of Greenhouse Gas Contr $\hat{\mathfrak{G}}$ (2020) IEAGHG*. Start-Up and Shutdown Protocol for Natural Gas-Fired Power Station with CO2 Capture* (2022)

FECM Projects High CO₂ Capture Rates

** AOI 1b

FECM Projects High CO₂ Capture Rates

FECM Projects High CO₂ Capture Rates

Addressing CCS Flexibility: ARPA-E FLECCS

ARPA-E FLExible Carbon Capture and Storage (FLECCS)

Jack Lewnard, Program Director ([Jack.lewnard@hq.doe.gov\)](mailto:Jack.lewnard@hq.doe.gov) Chris Vandervort, T2M Advisor [\(Chris.Vandervort@hq.doe.gov](mailto:Chris.Vandervort@hq.doe.gov)

Phase 1: 2019-2022

- 18 months, \$11.5MM, 12 technology teams
- Modeling studies and economics based on future dispatch scenarios
- Deliverables: PFD, H&M balance, equipment list, general arrangement, TEA

Phase 2: 2022-2025

- 36 months, \$33MM, 5 technology teams
- Lab to large pilot demonstrations focused on carbon capture system

2024 ARPA-E FLECCS Phase 2 Annual Meeting –

Point Source Capture Breakout (Friday 8/9/24)

Net Zero-Flexible Power Meeting (June 2024)

Key Objectives

- 1. Review **FECM** projects targeting high $CO₂$ capture rates and ARPA-E FLECCS findings
- 2. Identify **promising approaches to achieve high capture rates** from point sources
- 3. Identify **challenges and R&D needs** to achieve high capture rates and flexible operation
- 4. Determine **economic trade-offs of achieving high capture rates**
- 5. Identify opportunities to **co-deploy PSC and DAC** to reach net-zero

Participants

Technology Developers

Findings to inform future funding opportunity announcement

Key Take-Aways: Technology Approaches for High Capture Rates and Flexible Operation

Solvent technologies

- 99%+ capture rate technically feasible
- Many developers report cost < 100 $\frac{5}{t}$ CO₂ (TEA) even at high capture rates
- Anticipate possible challenges with emissions at high capture rates, additional engineering controls may be needed
- Greatest challenge is flexible operation

Other technologies (membrane, sorbents and cryogenic)

- Generally more flexible systems and can start/up shut down in minutes vs. hours
- Achieving > 95% operation challenging in some cases:
	- Membranes: hybrid options (membrane + sorbent) can boost capture rate
	- Sorbents: compromise with product purity, R&D needed

Economic Analysis at High Capture: Marginal Capture Cost

• Important to determine limiting level of $CO₂$ capture for CCS: at what point do we rely on DAC to achieve zero-emissions from power plants?

$$
Marginal cost|_{x2} = \frac{\partial C}{\partial x}\Big|_{x2} \approx \frac{C_{x2} * x_2 - C_{x1} * x_1}{x_2 - x_1}
$$

 $x = CO₂$ capture (%); $x₂$ is a higher level of CO₂ capture than $x₁$

 $C = CO₂$ capture cost

When CF is low, it may be beneficial to couple CCS with DAC

How does marginal capture cost change for other capture technologies? Future TEA studies needed

Fossil Fnergy and Carbon Management Du et al. *Zero-* and negative-emissions fossil-fired power plants using CO₂ capture by *conventional aqueous amines*. Int J of GHG Control (2021)

Key Take-Aways: Materials and Processes

- *What CO2 capture materials and/or processes are best suited to achieve high capture flexible operation?*
- *What are the costs associated with achieving net-zero flexible power for different CO2 capture technologies?*

Key Points

- **Technology advancements needed for nonsteady state operation**: how to control processes, manage degradation and emissions
- **Capture cost impacted by high capture/nonsteady operation**: account for equipment overdesign, storage buffers...

RD&D Needs

1. **Standardized datasets start up/ shutdown operation** (cooling water and steam availability, temperature profiles, emissions…)

2. **Design capture technologies and process configurations** for non-steady state operations

3. **Techno-economic analyses** to understand implications of flexible operation

Key Take-Aways: Materials Degradation and Emissions

- *What is the impact of operational variability and high capture rates on degradation of capture materials and non-CO₂ emissions?*
- *What* CO₂ capture materials and processes minimize non-CO₂ emissions under operational variability?

Key Points

- **Operational fluctuations** (temperature, O₂) spikes, impurities) from flexible operation **impact materials degradation and emissions**
- High capture operation may increase **solvent degradation:** higher-solvent make-up and reclaiming

RD&D Needs

- 1. **Stress testing** of capture media
- 2. **Long term testing pilots at relevant conditions** to understand impact on emissions and solvent degradation

3. **Additional engineering controls and air dispersion modelling**

Key Take-Aways: Reliability of Flexible CCS

- *What are some upstream and downstream balance of plantissues that arise with flexible CCS operation?*
- *What are challengesin reliability of unit operations of capture processes?*
- *What are challengesin existing process controls and models when operating flexibly?*

Key Points RD&D Needs

- **Challenges upstream:** heat extraction, cooling water (availability, temperature)
- **Challenges downstream:** pipelines and intermittent production of $CO₂$, $CO₂$ Specs
- Challenge to develop **dynamic process models** for flexible CCS operation

1. **Integrated process** models on CO₂ capture, **transport and storage**

2. Dynamic process models for flexible capture operation

3. Stakeholder coordination (power plant, pipeline owners, carbon capture technology providers)

Fossil Energy and
Carbon Management

Questions?

95+% NGCC Solution.. Leverage both PSC & DAC developments?

Mismatch of Component Dynamics

System-level challenges (some may be beyond FLECCS)

Operations

- Mis-match in system dynamics
- Maintaining $CO₂$ purity through transients (start-ups, load swings, shut-downs)
- Managing power derate
- Matching steam supply/demand through load cycle
- Purge times
- ‣ Unknown dynamics for the "other" components
	- Fans/dampers/flue gas hydraulics, esp if multiple units
	- CO2 compressors/dehydration
	- Rapid flowrate changes may challenge $CO₂$ pipeline and downstream sequestration
- ▶ System Optimization for Load Following
	- Part load; short runs; offline for extended periods, esp. during shoulder months
	- Solvent storage?
	- Multiple trains to load follow?
	- Exhaust gas recycle?
	- Run at loss to maximize revenue?

$Issues - CO₂ Pipelines$

‣ Pipeline Contracts specify composition and "rateable" flow

- Composition
	- Almost all US and global experience is with CO2 from sources without free oxygen. May contain H2S and NH3.
	- Flue gas will have O2. May contain SO2/HSO3, NO2, possibly HCl
	- Uncertainty in water phase diagram for supercritical CO2
	- Water drop-out/acid/O2 may cause pitting corrosion
- Flow
	- Pipeline contracts usually require "rateable" or constant flow
	- Power plants and other sources may have variable flow, frequent stops/starts
	- Supercritical CO2 is incompressible. Flow/pressure fluctuations may cause problems
- \triangleright CO₂ pipeline permitting uncertainty

Recommendations

 $CO₂$ specs are a system-level issue

• At a minimum, start measuring and reporting key trace species (O2, SO2, NO2, HCl, H2O, other)

‣ Need input from all stakeholders in the CO2 chain. Many DOE offices engaging.

- Flue gas source (composition, flow)
- Carbon capture technology vendor (quality of CO2, esp during transients)
- CO2 compressor/CO2 "polishing" (esp H2O)
- Pipeline operator (PRCI)
- CO2 "end game"
	- CCS
	- EOR
	- CO2 utilization

Summary

CCS retrofit to NGCC plants is hard, esp due to intermittent operation

- Steady state operation of components is not sufficient for assessing how these system will work
- ▶ Unsteady-state operations may result in off-spec CO2 during transients
	- Capture rates need to address disposition of potentially off-spec CO2
- ▶ FLECCS evaluating novel carbon capture systems
	- Will likely tee up more issues than it will resolve

▶ Recommend DOE coordinate information sharing for system-level issues

• Need collaboration among power plant operators, CCS process developers, component OEMs, pipeline operators, and EOR/CO2 utilization/sequestration stakeholders to define critical design cases

- **Full workshop agenda**: [Net-zero](https://netl.doe.gov/events/24HCR) Flexible Power: High Capture Rate Project Review Meeting | [netl.doe.gov](https://netl.doe.gov/events/24HCR)
	- *3 panel discussions:* perspectives from technology developers, OEMs and utilities
	- *2 sessions current FECM projects report-out*: 9 projects
	- *3 talks***:** research findings on feasibility of high capture rates and flexible operation
	- *Report out from ARPA-E FLECCS program*
	- *Breakout sessions:* 3 topics to cover
- **Summary report** will follow the meeting

Conclusions and future work

These learnings will help improve the performance of flexible operation and SUSD strategies in $CO₂$ capture plants.

The data from this study will help in the development more robust process control systems, as well as improve the description of flexible and dynamic operation in process & systems models.

Future work:

- Investigate the impact of different process configurations and process control systems that could improve plant flexibility and SUSD performance, e.g., via process modelling.
- Effect of different solvent types on $CO₂$ capture plant $\overline{}$ flexibility and SUSD performance.
- Study dynamic interactions between the power plant and CCS process, also upstream/downstream effects.
- Techno-economic analysis to understand the cost implications of different SUSD strategies.
- Understand the impact of SUSD cycles at a systems scale, i.e., effect on ability to reach net zero.

Flexible operation of a demonstrationscale CO₂ capture plant

In 2020, we studied the effect of start-up & shut down on $CO₂$ emissions at TCM.

Studying the following: (i) hot vs cold start-up, (ii) timing of steam availability (conventional vs preheat) vs delayed), (iii) solvent inventory capacity, (iv) start-up solvent loading/composition.

Equinor oil refinery (not shown)

http://cdn3.spiegel.de/images/image-349556-860 poster 16x9-ygkk-349556.jpg

Bui, M., Flø, N. E., de Cazenove, T., Mac Dowell, N., (2020). International Journal of Greenhouse Gas Control 93 102879 **Fossil Energy and**

Carbon Management

fecm.energy.gov 28

Imperial College London

Key learnings

- High capture rates above 90% is techno-economically feasible (at steady state).
- During dynamic operation, 90% capture rate is feasible with load following regimes ۰ (e.g., ramp up/down) and hot start-up and shut down.
- During cold start-up and shut down, $CO₂$ capture rates can reduce to 50% or lower. ۰
- Increased start-up and shut down cycles could increase $CO₂$ emissions of a CCGT \bullet significantly.

CAPTURE EFFICIENCY SKEW [DROP-IN AT TCM]

Minimal additional energy \bullet consumption from 76-96% capture efficiency

- Energy penalty associated with deep decarbonization >99% capture efficiency
- Evaluation of techno- \bullet economic analysis for deep decarbonization with LLNL

SRD SENSITIVITY TO CAPTURE EFFICIENCY

Fossil Energy and Carbon Management

fecm.energy.gov

 \Box

 α ш \mathbb{N}

 \sim н

Ш z

MELL

т.

z \Box

MOVING TOWARDS HIGHER CAPTURE EFFICIENCIES

CANSOLV can achieve high – up to 98% + – capture efficiencies, even at low CO₂

Fossil Energy and Carbon Management

fecm.energy.gov 31

High capture rates – delivering 95% and above

- ACC demonstration with SINTEF at Tiller pilot plant \bullet - campaign to qualify ACC proprietary solvent technology for high capture rates in dilute flue gases
- Targeting 90%-98% capture with proprietary solvent - 'aged solvent', over 3,700 hours of prior use at MTU
- No challenge with delivering 95-98% capture rates - standard configuration: moderate increases in SRD - also 99% capture OK with 4% CO₂ but SRD penalty
- Non-linear correlation between capture rates and SRDs, sharper SRD increase for leaner flue gases
- Realised some optimised performance from tuning solvent concentration
- <u>Key observation</u> high (98%+) capture rates saw \bullet narrower optimum operational windows, higher vulnerability to issues like flue gas fluctuations, column behaviour and liquid distribution

 $0.4.2\%$ 0.5.5% 0.8.0% 0.13.5%

Liquid-to-gas ratios (mass basis) versus relative specific reboiler duties for flue gases with different CO₂ content and capture rates (charts show two batches of data)

NB: SRD comparison is vs. 13.5% CO2 stream and 90% capture rate

RTI
| IVOCOT GHOHHAHC. L/O Optimization

COST ANALYSIS [LLNL FOR MEA]

Source: Wengin Li, Tom Moore, Mengyao Yuan, Tracie Owens; High-Rate Post Combustion Capture for Natural Gas Power Plant 2023 FECM Project; LLNL 2023.

OPEX

- Increase T(str.sump)
- Increase L/G
- Decrease gas flow rate
- Increase STR pressure

CAPEX

• Extra packing height

Future work:

- Evaluation of techno-economic analysis for deep decarbonization with advanced CO₂ capture systems
- Same with ION's ICE-31

JULY 26, 2024

T.

z \Box

PG B

Pacific Northwest

EEMPA for Zero- and Negative-Emissions NGCC Plants and Comparison with MEA

Carbon capture cost

- Represents an average cost of reducing $CO₂$ concentration from a starting point (4% in NGCC flue gas) to a targeted capture rate
- Is a key economic metric for evaluating post combustion carbon capture and comparing different technologies with the same starting and ending $CO₂$ concentration

EEMPA has much lower capture cost than MEA from 90% capture rate to zero- and negative-emissions.

 14

Effect of CO₂ Recovery

Fossil Energy and Carbon Management

fecm.energy.gov

Marginal Costs for Beyond 90% Capture

Fossil Energy and Carbon Management

fecm.energy.gov

MTR

High Capture Rates with Membranes are More Affordable for High CO₂ Content Industrial Streams

Capture cost is normalized to 60% capture from coal using Polaris Gen2 membranes

- Membrane capture costs increase with increasing capture rate, particularly above 90% capture
- However, membrane capture cost is less sensitive to capture rate for higher feed $CO₂$ content; higher capture is more affordable for industrial streams (cement, steel, refinery, etc)
- Calculations are for a two stage membrane design with no selective recycle

Capture cost is normalized to 60% capture from coal using Polaris Gen2 membranes

5

Economics at 99% Capture*

Cost Optimizations

- Co-pollutant capture value
- Preferred / advantaged electrical rates
- Behind the meter renewable power options

Key Assumptions

- Electricity price: \$35/MWh at power sites, \$70/MWh at industrial sites
- NG price at cement: \$4.59/MMBtu
- 85% capacity factor
	- Low capex enables application to low capacity factor plants as well
- NETL reference capital cost recovery
- Nth-of-a-kind estimates assume 10 MMTPY cumulative installed FrostCC capacity across all commercial projects

*Negligible cost of capture change between 90-99% capture

Achieving 95+% CO2 capture recovery with Svante technology

- Svante Rapid Temperature Swing (RTSA) capture cycle can achieve 95+% recovery \bullet
- The drawbacks of 95+% recovery targets are on the energy demand and \bullet manufacturing performance
- Methods to enhance CO2 recovery in Svante's \bullet RTSA process include
	- Optimizing structured adsorbent bed
	- Process cycle and plant process optimization
- 2-stage system can be another option to enhance CO2 capture rate

$CO₂$ Capture Cost at Different Capture Rates $-$ NGCC

Process configuration: Absorber with simple solvent intercooler