

FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap[™] FG Process

NETL Presentation

August 2024

FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap™ FG Process

a. Acknowledgment:

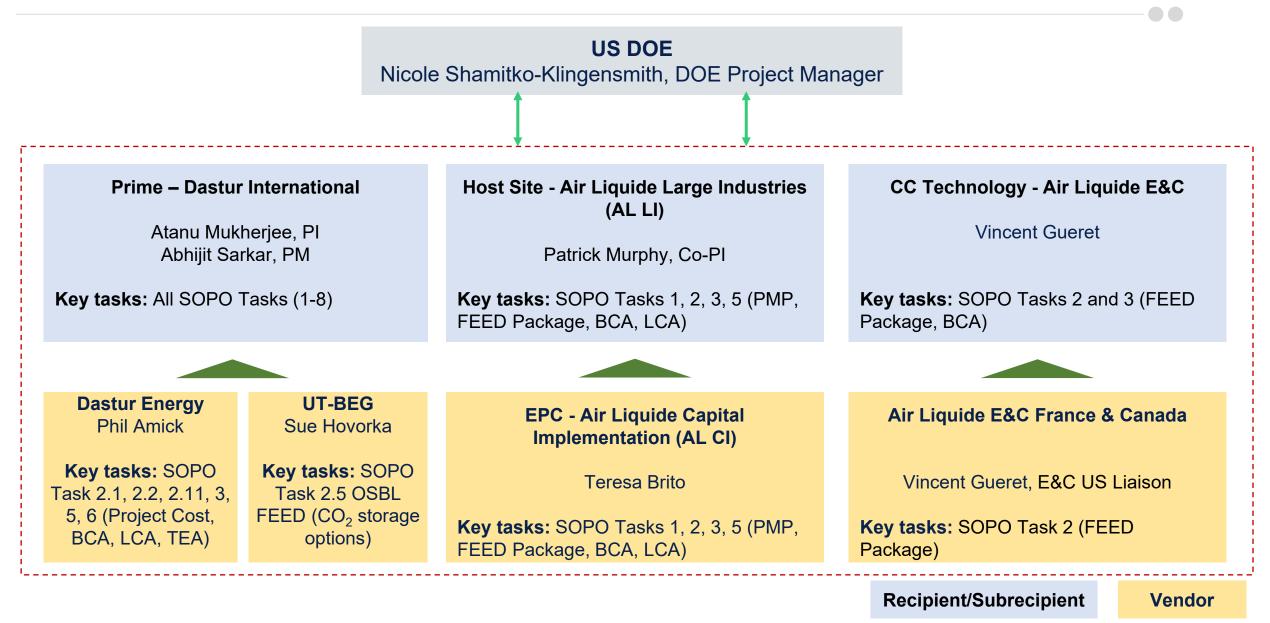
This material is based upon work supported by the Department of Energy under Award Number DE-FE0032192.

b. Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

• Host Site

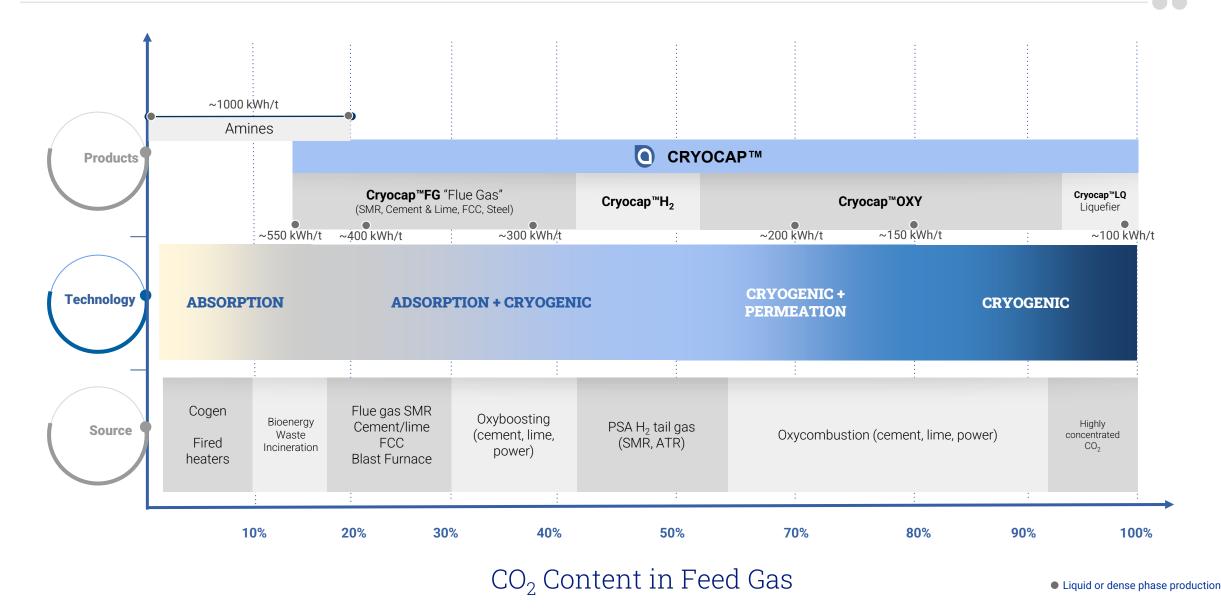
- Air Liquide owned and operated **Steam Methane Reformer** (SMR) located in La Porte, TX
- World Scale SMR supplying H₂ to US Gulf Coast industrial customers as part of Air Liquide's Gulf Coast Hydrogen Pipeline network
- The La Porte SMR produces approximately **950 ktpy CO₂**
- Favorable regional geology for CO₂ sequestration and high density of 3rd party emission sources supporting market devpt and storage solutions offerings


• Objective of the FEED Study

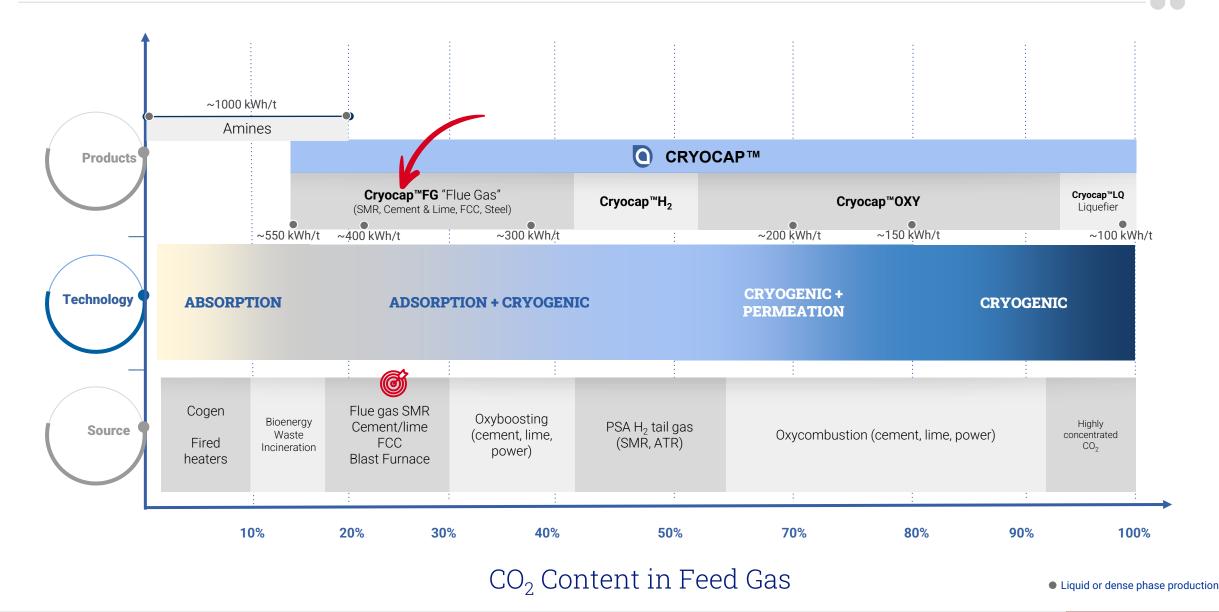
- **Capture 900 ktpy CO₂** from SMR flue gas with $95\%^+$ C capture efficiency and >95% purity
- Based on Air Liquide's Cryocap™FG technology

Air Liquide

Project Team and Key People

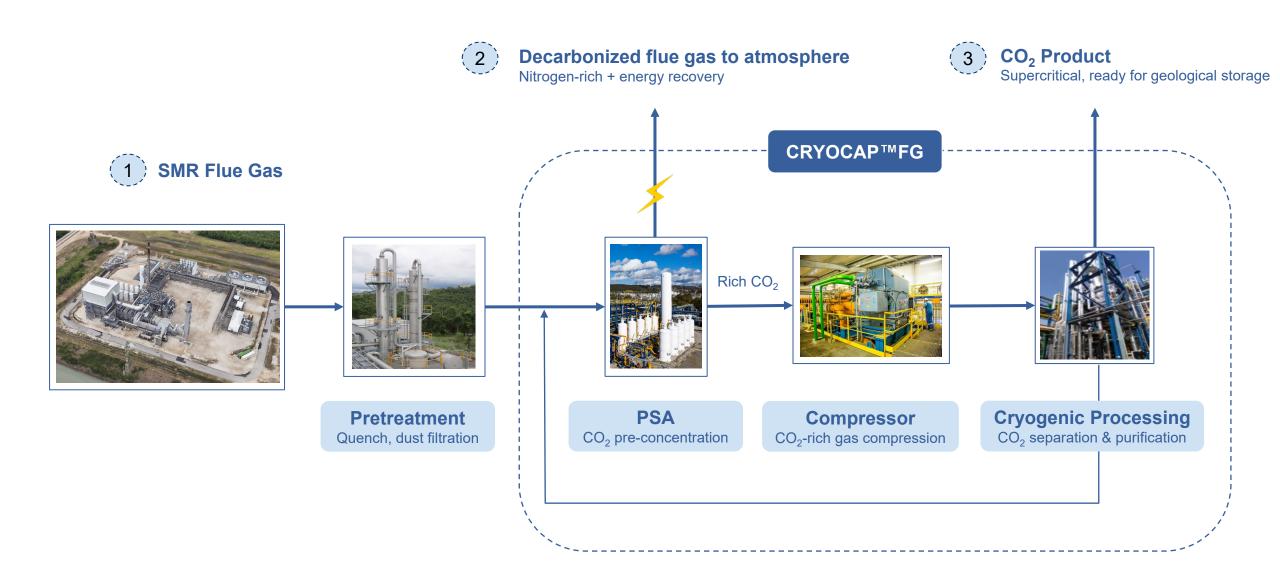


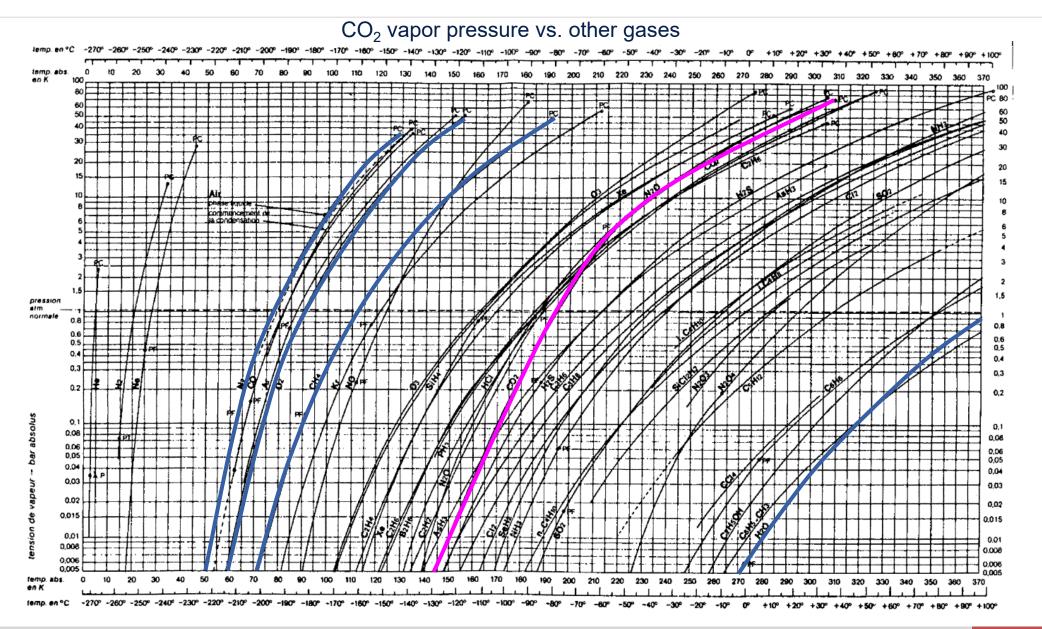
- ~60% completion to date
- Preliminary Engineering Package delivered in Feb 2024, presented to DOE in March
- Key deliverables completed: <u>TMP, PFDs, H&MB, P&IDs, control strategy, ISBL equipment list & interface</u> <u>list, geotechnical report, waste & emission disposal study</u>, ...
- FEED study ongoing tasks and deliverables:
 - Plot plan, lighting and security layouts
 - Material Take-Offs
 - Electrical one-line, load list, equipment list, grounding drawing
 - Constructability review
 - HAZOP review scheduled at La Porte site in August
- No-Cost Extension mutually agreed with DOE for submission of all FEED deliverables by March 2025 + 6 months for DOE review and report finalization



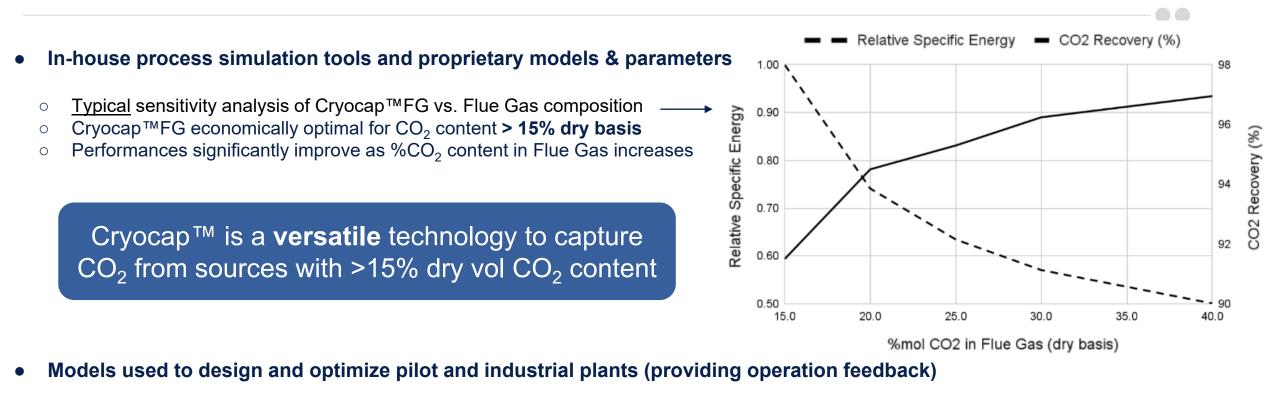
Air Liquide CO₂ capture techno mapping (low pressure streams)

• Air Liquide


Air Liquide CO₂ capture techno mapping (low pressure streams)


• Air Liquide

Cryocap[™]FG Block Flow Diagram


Cryocap[™]FG thermodynamics fundamentals (cryogenics separation)

Air Liquide

Cryocap[™]FG Carbon Capture Process Model

Air Liquide

FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap[™] FG Process

1. Technology leveraging Air Liquide's experience in integrating and operating process solutions utilizing referenced technology bricks such as compression, PSA and cryogenic separation

1. Environmentally sustainable:

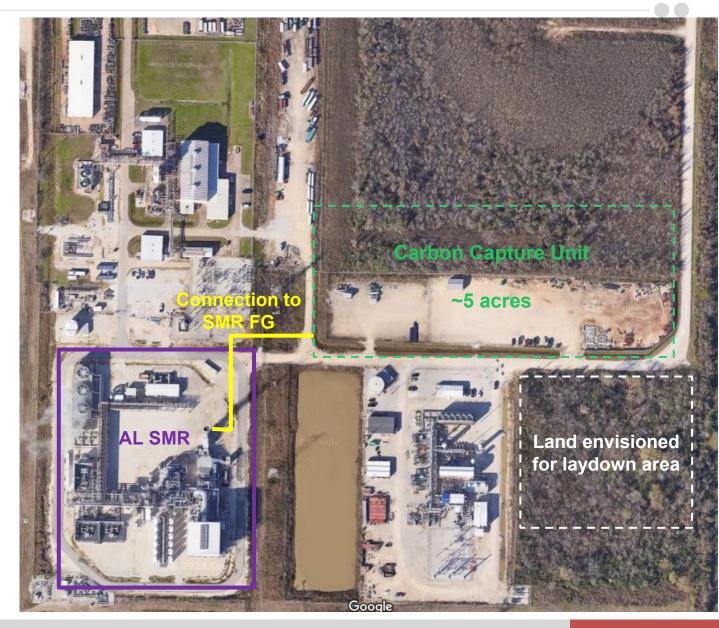
- The main utility is electricity, leading to very low carbon intensity when renewable power is used,
- No large amount of heat required (minimum steam usage) compared amine wash,
- No use of any chemicals, except caustic soda or equivalent for the pre-treatment,
- No use of any flammables,
- Intrinsic high NOx abatement.
- **1.** CO₂ quality produced by the cryogenic section **adaptable** to specific requirements:
 - **High purity CO₂** (>99.9%mol): meets the geological storage specifications (upgrade to food-grade possible)
 - **Flexibility** to easily meet a variety of end user requirements / product specifications
 - \circ Produced in gaseous or liquid state \rightarrow **supercritical** is considered for this FEED
- 1. Compact and flexible footprint

Feed Gas Composition

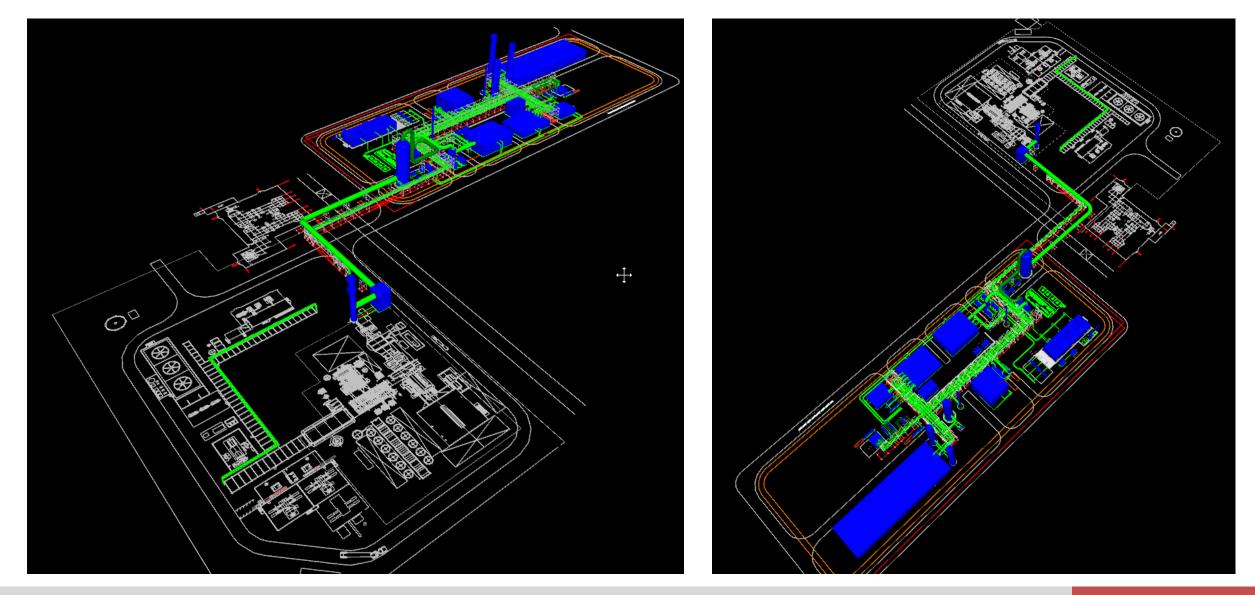
Parameters	UOM	Nominal					
Temperature	°F (°C)	346 (174)					
Pressure	psia (bara)	14.7 (1.012)					
Flue gas volumetric flow	Nm³/hr	287,910					
Composition							
Carbon dioxide (CO ₂)	mol% (dry)	23.7					
Nitrogen (N ₂)	mol% (dry)	73.9					
Oxygen (O ₂)	mol% (dry)	1.5					
Argon (Ar)	mol% (dry)	0.9					
Hydrogen (H ₂)	mol% (dry)	< 0.01					
Water (H ₂ O)	mol%	19.1					
Impurities							
CO	ppm mol (dry)	21.7					
Nitrogen Oxides (NO+NO ₂)	ppm mol (dry)	5.4					
Sulfur Oxides (SOx)	ppm mol (dry)	1.1					
Ammonia	ppm mol (dry)	10.9					
VOCs	ppm mol (dry)	3.3					
Particulate Matter	mg/Nm ³ (dry)	5.4					

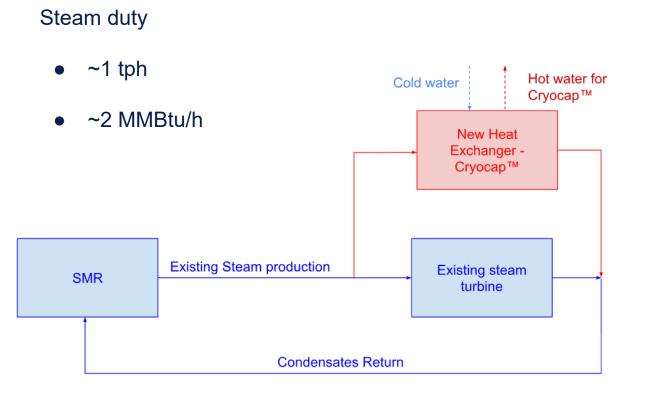
FE0032192 - Carbon Capture on Air Liquide US Gulf Coast Steam Methane Reformer using Cryocap[™] FG Process




Parameters	CO ₂ -rich stream for sequestration
Temperature °F (°C)	< 105 (< 40)
Pressure psig (bar)	2,000 - 2,350 (138 - 163)
Composition	
CO ₂	> 97 vol% (dry basis)
H ₂ S	< 10 ppmw
Total S	< 30 ppmw
Methane	< 3 vol%
Ethane plus	< 1 vol%
Oxygen	< 10 ppmw
Glycol	< 0.3 gallons per MMCF
Carbon monoxide	< 4,250 ppmw
NOx, SOx, PM, amines	< 1 ppmw each
Hydrogen	< 1 vol%
Mercury	< 5 ng/l
Ammonia	< 50 ppmw
Inert (incl. N ₂ and Ar)	< 0.5 vol%
Liquids	Products shall be free of liquids at delivery conditions and shall not produce condensed liquids in the pipeline at specific pressure and temperature
Compressor lube oil carryover	Not more than 50 ppmw and shall not cause fouling of pipeline or any downstream systems/reservoirs

Cryocap[™]FG implantation at site





Cryocap[™]FG 3D Model (ongoing)

Existing equipment shown in blue New equipment shown in red Wastewater treatment: cooling tower blowdown

- ~140 gpm
- Combined with existing blowdown

Project Timelines (1 of 2)

Task No.	Sub Task	Task/Deliverable Description	04/23	05/23	06/23 (07/23 (08/23 09/23	10/23	11/23	12/23	01/24	02/24	03/24	04/24	05/24	06/24	07/24	08/24	09/24	10/24	11/24	12/24	01/25	02/25	03/25
1.0		Project Management and Planning																							
		Project Team Kick-off Meeting																							
	1.1	Project Management Plan (PMP)																							
		Updated PMP		D																					
		Milestone: DoE Kickoff Meeting			MK	OM																			
	1.2	Technology Maturation Plan (TMP)					D																		
	1.3	Workforce Readiness Plan																							
		Initial WRP					D																		
2.0		Front-End Engineering Design (FEED) Package																							
		Project Scope and Design																							
		Project Design Basis																							
	2.3	Preliminary Engineering																							
		Milestone: 20% of FEED Package Complete									М	20%													
		Preliminary Engineering Package									D														
		ISBL/Carbon Capture System Engineering Design Package																							
		OSBL/Balance of Plant Engineering Design Package																	_						
		HAZ OP Review																							
	2.7	Constructability Review																							
		Milestone: 90% of FEED Package Complete																		М	90%				
		HAZOP & Constructability Review Complete																		D					
		Permitting Study and Review																							
		Electricity Sourcing Study																							
	2.10	Emissions and Waste Disposal Study																_							
		Milestone: 80% of FEED Package complete																М	80%						
		Studies & Investigations Reports																D							
	2.11	Cost Assessment																							
		Milestone: 100% of FEED Package complete																				100%			
		Submission of Final Engineering Design Package with Project Cost Estimate																	_		D				

Key upcoming deliverables and milestones

Project Timelines (2 of 2)

Task No.	Sub Task	Task/Deliverable Description	04/23	05/23	06/23	07/23	08/23	09/23	10/23	11/23	12/23	01/24	4 02/24	03/24	04/24	05/24	06/24	07/24	08/24	09/24	10/24	11/24	12/24	01/25	02/25	03/25
3.0		Business Case Analysis (BCA)																								
	3.1	Business Case Analysis																								
	3.2	Technical Overview																								
	3.3	Market Analysis																								
	3.4	Future Deployment Projection																								
	3.5	Quantification of Benefits																								
4.0		EH&S Analysis																								
5.0		Life Cycle Analysis (LCA)																								
6.0		Techno-Economic Analysis (TEA)																								
	6.1	System Boundaries																								
	6.2	Process Design Assumptions																								
	6.3	Process Flow Diagram & Material Energy Balances																								
	6.4	Calculated Output from Analysis																								
		Milestone: 100% of TEA complete																							MT	'EA
		BCA, EH&S, LCA and TEA																							DC	omplete
7.0		Environmental Justice Analysis																								
8.0		Economic Revitalization and Job Creation Outcomes Analysis																								
		Environmental Justice, Economic Revitalization and Job Creation Questionnaires																								D
		Milestone: Study Complete & Final Report Submission																					FEED	study con	nplete	М

Key upcoming deliverables and milestones

Air Liquide 🔲

Total project budget	Total budget	Share
Federal share	US\$ 5,995 K	80%
Non-federal share	US\$ 1,499 K	20%
Total	US\$ 7,494 K	100%

Cost type	Apr 2023 – May 2024	Share	Remaining budget	% Remaining
Federal share	\$ 3,098 K	80%	US\$ 2,987 K	48%
Non-federal share	\$ 774 K	20%	US\$ 725 K	48%
Total	\$ 3,872 K	100%	\$ 3,622 K	48%

Abhijit Sarkar Project Manager

abhijit.sr@dastur.com

Lindsey Turney Principal Process Engineer

lindsey.turney@airliquide.com