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Questions when | started

 What is CCS?

* Do we need this?

* Does it work?

* What does it do?

* |s it safe?

* Which technology is best?
 What does it cost?

* How much CO, can you capture?



Unanimity on the need for CCS and CDR
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Significant commercial pipeline emerging

* In 2023, there were 392 CCS
projects:

e All these projects have a capture
capacity of 361 MtCO, pa

* the 41 in operation captured and
stored 49 MtCO, pa

e 26 in construction which will capture
and store 32 MtCO, pa

* This is still significantly below the
required levels of CCS in the IPCC
scenarios
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Global policy tailwinds driving deployment

Canada:

- Net-zero by 2050
- Alberta Carbon Trunk Line
- Quest CCS Project

- CCUS Incentive Tax Credit
USA: >

- 1lJ Act

- IR Act

(1) Global CCS Institute. (2024). Resources and Publications. Retrieved from
https://www.globalccsinstitute.com/resources/publications-reports-research/

(2) International Energy Agency (IEA). (2024). Reports and Analysis. Retrieved from
https://www.iea.org/analysis?type=report

2024 Global CCS Capacity
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20 years of CCS in the UK
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20 years of CCS in the UK

* The UK has been trying to deliver CCS for almost two decades

* Final Investment Decision (FID) imminent’, but what have we
learned?

* How has how we think about CCS changed?
 What are the remaining challenges and next steps?

| hope...



What has changed?

Then
“Clean Coal”
Policy vacuum
Avoided emissions
Ambiguity of value of CCS
Point source to sink
Baseload
Whole value chain
Pipelines
“30 wt% MEA”
Large scale, bespoke application

Technology “demonstration”

Now
“Net Zero”
Global policy tailwinds
Net Zero, 1.5C, and CDR
Indispensability of CCS
Hubs, clusters, and networks
Flexibility
Split value chain
Multiple transport modes
Diverse portfolio of capture technologies
Modular, “cookie cutter” technologies

Technology “commercialisation”



CCS then...
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CCS now...
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Transition to focus on industrial applications and hubs
and cluster approach. Driven by the narrative of
“industrial decarbonisation” rather than “demonstrate
CCs”

Scale and approach
Large and small point sources

Modular construction ideal for distributed point
sources (modularity)

Applications being considered
Power, industrial processes and blue hydrogen

Carbon dioxide removal — BECCS and DACCS
Technology

More technology diversity (e.g., membranes, water
lean solvents, solid sorbents)

Flexible operation

Multiple technology suppliers and vendors
Policy & Regulation

CCS policy and regulations is much more developed in
the US (e.g., IRA), the UK, Norway and the EU (e.g.,
CBAM)

Business models developed with input from private
sector

GCCSI, 2021. Global Status of CCS. https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report Global CCS Institute.pdf
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CCS technology pipeline - 2018
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CCS technology pipeline - 2024
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CCS starts with a store

Figure 31-3:
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CCS starts with a store
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UK strategy for CCS deployment

e UK’s industrial decarbonisation
challenge ran from 2019 — 2024

; * Provided £210M of public funding,
8 leveraged £261M of industrial funding
/ to support FEED studies

B * HMG has adopted a “Cluster
w" Sequencing” process with a
= cremicals 5 (romoesc combination of power and industry

B Iron & Steel

=t ferovs metats V) projects selected for Track 1

B Non-metallic Minerals

= o « * HyNet North West: hydrogen and industry
e East Coast Cluster: power and hydrogen

South Wales ]

ot * Track 2: Scottish and Humber clusters

a UKRI, 2024. Industrial Decarbonisation. https://www.ukri.org/what-we-do/browse-our-areas-of-investment-and-support/industrial-decarbonisation
b https://www.gov.uk/government/publications/cluster-sequencing-for-carbon-capture-usage-and-storage-ccus-deployment-phase-1-expressions-of-interest/october-2021-update-track-1-clusters-confirmed
¢ https://www.gov.uk/government/publications/cluster-sequencing-for-carbon-capture-usage-and-storage-ccus-track-2/ccus-cluster-sequencing-track-2-market-update-december-2023
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Evolution of UK’s CCS infrastructure

* Industrial clusters only account for 16% of

total UK emissions

* 88% of the UK’s point source emitters are
“small”, i.e., < 100 ktpa and dispersed
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Different approaches to CCS development

Central planning Project by project approach Value of strategic planning

,‘ o
@ - Optimal solution (total system costs)
85 < Optimal solution (transport costs only)
N80
(@)
O
e
g
.75
e
3 °
65 —e PY

20 40 60 80 100 120
Capture target in 2050 [MtCO,/a]

3+0244026+027

* The current “cluster by cluster” approach to CCS
development in the UK is closer to the red line than the
blue

* As CCS deployment grows, the cost ratio approaches unity.

* Ensure that all pipelines are using a similar CO, specification
so future system integration can occur

Mersch et al. (2024). Study for DESNZ, HMG
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What does CCS “do”?

* CCS started out as a “clean coal” technology, and coal was (mostly) a
baseload power generation asset
* CCS was also interpreted as being costly to build and costly to operate

* Therefore, baseload operation was deemed the obvious operating
strategy

* However...



Energy system optimisation (ESO) framework ESt)
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Quantifying the value of CCS (JAMALI)
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Value # cost
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Flexible CCS technologies provide the greatest value
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Increasing understanding of the role of flexible CCS
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Increasing understanding of the role of flexible CCS

To accommodate
intermittent
renewables, fossil
fuel power plants
will need to operate
flexibly.

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327-344.

Typical modes of operation for
fossil fuel-fired power plants in
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Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169-183.
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Increasing understanding of the role of flexible CCS

To accommodate
intermittent
renewables, fossil
fuel power plants
will need to operate
flexibly.

Coordinate the
balance between
electricity demand
and CO, capture
requirements.

Typical modes of operation for
fossil fuel-fired power plants in
the UK
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Development of optimal operation strategies

The use of solvent storage Combined cycle gas turbine power plant
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References: Mechleri, E., Fennell, P. S. & Dowell, N. M. (2017). International Journal of Greenhouse Gas Control, 59, 24—39.
Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169-183.



Demonstrating flexible operation at TCM
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Bui, Mac Dowell, et al., (2020). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO, capture plant. International Journal of Greenhouse Gas Control, 93, 102879.



Demonstrating flexible operation at TCM
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Which technology parameters matter?
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The value of reliable low Cl power

e Data centres and “Al” are very power hungry
e Getting a grid connection is increasingly difficult

* This is leading to hyperscalers (Amazon, Microsoft, etc.) seeking
“direct wire” connections for power

* They are primarily seeking low/zero Cl power, and this must be
reliable power

* Historic preference for renewable energy
* But...
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Renewable energy is getting cheaper...

Wind, solar PPA prices have risen dramatically in recent years ($/MWh)
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Data acesssed Jan. 30, 2024,
PPA = power purchase agreement.

Shiows lowest 25% of FRA offers across six wholesals energy markets in US and Canada for each technology. "Blended”™is an
ageregation of the lowest 25% of wind and solar PPA offers.

Source: LevelTen Energy.
@ 2024 S&P Global.

Costs continue to fall for
solar and wind power technologies
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Source: https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/north-american-solar-wind-power-prices-continued-ascent-in-2023-8211-report-80219261

https://www.irena.org/news/pressreleases/2020/Jun/Renewables-Increasingly-Beat-Even-Cheapest-Coal-Competitors-on-Cost
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Won't CCS be expensive?
L
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Examines impacts downstream of investments in CO, abatement in the steel

industry.
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* Expanding body of analysis demonstrates that, when considered across the entire value chain, the marginal cost of mitigation is negligible
* 1-2% on infrastructure, 1% on vehicles, 1% on buildings. Observed “green premium” on muni bonds is 0.023%

* See fore.g.,:
* Rootzen and Johnsson, “Paying the full price of steel — Perspectives on the cost of reducing carbon dioxide emissions from the steel industry”, Energy Policy, 2016,
* Rootzen and Johnsson, “Managing the costs of CO2 abatement in the cement industry”, Climate Policy, 2017,

* Karlsson, Rootzen, and Johnsson, “Reaching net-zero carbon emissions in construction supply chains — Analysis of a Swedish road construction project”,
Renewable and Sustainable Energy Reviews, 2020,

* Subraveti, et al “Is Carbon Capture and Storage (CCS) Really So Expensive? An Analysis of Cascading Costs and CO Emissions Reduction of Industrial CCS
Implementatlon on the Construction of a Bridge”, 2023
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Current questions on CCS

* Where is the store?

* What's the business model?
* Can you capture all the CO,?
* Who can build it?

* Is there insurance?

* Can | finance it?



Some conclusions...

* No remaining debate as to the necessity for CCS — question is simply about financeable business models.
* The role and value of CCS recognised in power, industry, low Cl hydrogen/molecules, and CDR.

* Diversity in technology vendors provides competition and promotes innovation.

* Increasing understanding of the relative affordability of CCS across energy and industry

Remaining challenges

* Need standardised CO, quality and pipeline specifications.

* Expediting appraisal and development of CO, storage capacity.

* Social license is not 100% — this leads to delays and/or rejection along the CCS chain, thus increasing costs.

* Regulatory barriers requiring IP disclosure, e.g., UK’s solvent disclosure requirements by the Environmental Agency.
New opportunities for CCS

* New materials with resistance to degradation/VOC emissions, low water consumption, high purity CO, product stream
* Process and control technologies to support flexible operation

* “Al” is diving demand for baseload, low/zero Cl power

* Modular technologies can both address terminal value risk and be applied to small point sources
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