Imperial College London

20 years of CCS – what have we learned?

Niall Mac Dowell Imperial College London <u>niall@imperial.ac.uk</u>

Questions when I started

- What is CCS?
- Do we need this?
- Does it work?
- What does it do?
- Is it safe?

•

- Which technology is best?
- What does it cost?
- How much CO₂ can you capture?

Unanimity on the need for CCS and CDR

1 Intergovernmental Panel on Climate Change. (2022). Sixth Assessment Report: Working Group III. Retrieved from https://www.ipcc.ch/report/sixth-assessment-report-working-group-3/

2 Intergovernmental Panel on Climate Change. (2023). AR6 Synthesis Report: Climate Change 2023. Retrieved from https://www.ipcc.ch/report/ar6/syr/

3 International Energy Agency. (2021). Net Zero by 2050: A Global Roadmap for the Energy Sector. Retrieved from https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reachl

4 International Renewable Energy Agency. (2022). Hydrogen. Retrieved from https://www.irena.org/Energy-Transition/Technology/Hydrogen

5 International Renewable Energy Agency. (2021). Capturing Carbon: The Role of Carbon Dioxide Removal in Reaching Net-Zero. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Technical-Papers/IRENA_Capturing_Carbon_2021.pdf

Significant commercial pipeline emerging

- In 2023, there were 392 CCS projects:
 - All these projects have a capture capacity of 361 MtCO₂ pa
 - the 41 in operation captured and stored 49 MtCO₂ pa
 - 26 in construction which will capture and store 32 MtCO₂ pa
- This is still significantly below the required levels of CCS in the IPCC scenarios

Global policy tailwinds driving deployment

(2) International Energy Agency (IEA). (2024). Reports and Analysis. Retrieved from

https://www.iea.org/analysis?type=report

20 years of CCS in the UK

20 years of CCS in the UK

- The UK has been trying to deliver CCS for almost two decades
- Final Investment Decision (FID) imminent^{*}, but what have we learned?
- How has how we think about CCS changed?
- What are the remaining challenges and next steps?

What has changed?

Then	Now
"Clean Coal"	"Net Zero"
Policy vacuum	Global policy tailwinds
Avoided emissions	Net Zero, 1.5C, and CDR
Ambiguity of value of CCS	Indispensability of CCS
Point source to sink	Hubs, clusters, and networks
Baseload	Flexibility
Whole value chain	Split value chain
Pipelines	Multiple transport modes
"30 wt% MEA"	Diverse portfolio of capture technologies
Large scale, bespoke application	Modular, "cookie cutter" technologies
Technology "demonstration"	Technology "commercialisation"

CCS then...

Motivation

- Focus on emissions reduction/avoided emissions
- CCS was intended for "clean coal"
- Scale and approach
- Site-by-site approach
- Large Mt CO₂ projects
- Applications considered
- Applications with low capture costs natural gas processing, fuel and chemicals, coal power generation

Technology

- Predominantly amine-based capture
- Few technology providers Shell, Fluor, MHI
- Baseload operation
- Research on flexible operation started but for electricity market price benefits
- Policy & Regulation
- Under development

GCCSI, 2021. Global Status of CCS. https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report_Global_CCS_Institute.pdf

CCS now...

• Motivation

 Transition to focus on industrial applications and hubs and cluster approach. Driven by the narrative of "industrial decarbonisation" rather than "demonstrate CCS"

• Scale and approach

- Large and small point sources
- Modular construction ideal for distributed point sources (modularity)
- Applications being considered
- Power, industrial processes and blue hydrogen
- Carbon dioxide removal BECCS and DACCS
- Technology
- More technology diversity (e.g., membranes, water lean solvents, solid sorbents)
- Flexible operation
- Multiple technology suppliers and vendors
- Policy & Regulation
- CCS policy and regulations is much more developed in the US (e.g., IRA), the UK, Norway and the EU (e.g., CBAM)
- Business models developed with input from private sector

GCCSI, 2021. Global Status of CCS. https://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Report_Global_CCS_Institute.pdf

CCS technology pipeline - 2018

CCS technology pipeline - 2024

Concept	Formulation	Proof of concept (lab tests)	Lab prototype	Lab-scale plant	Pilot plant	Demonstration	Commercial Refinement required	Commercial
TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
Electrochemically mediated adsorption	Ocean storage	Post-combustion ionic liquids	Oxy-combustion gas turbine (water cycle)	Algae cultivation for biodiesel production	Post-combustion biphasic solvents Pre-combustion Low T separation (CO ₂ liquefaction) Membranes dense inorganic Calcium carbonate Looping (CaL) Chemical looping combustion (CLC) CO ₂ derived chemicals/ fuels	Post-combustion adsorption (TSA) BECCS power CO ₂ absorption from flue gas Membranes polymeric (pre-combustion) Pre-combustion IGCC + CCS Oxy-combustion coal power plant Fuel cell carbon capture Mineral storage CO ₂ -EGR	Direct air capture (DAC) CO ₂ derived methanol BECCS industry Depleted oil & gas fields	Post-combustion amines (power plants) Pre-combustion syngas processing via liq absorption Pressure swing adsorption (PSA/VSA) Transport on-shore & off-shore pipelines Transport ships Saline formations CO ₂ -EOR
							Transport	
	list is not exhaustive						Storage	
							Utilisation	

Adapted from Bui et al. (2018). Energy & Environmental Science, 11 (5), 1062-1176

Updated from data in: 1) Bukar & Asif (2024). https://doi.org/10.1016/j.rser.2024.114578 2) GCCSI (2023). https://www.globalccsinstitute.com/wpcontent/uploads/2023/08/State-of-the-Art-CCS-Technologies-2023-Global-CCS-Institute.pdf 3) Rezaei et al. (2023). Emerging technologies in postcombustion carbon dioxide capture & removal. https://doi.org/10.1016/j.cattod.2023.114286 4) Raganati, F. & Ammendola, P. (2024). CO₂ Postcombustion Capture: A Critical Review of Current Technologies and Future Directions. Energy & Fuels. 10.1021/acs.energyfuels.4c02513 5) Raganati, F., Miccio, F. & Ammendola, P. (2021). Energy & Fuels, 35 (16), 12845-12868. 10.1021/acs.energyfuels.1c01618 6) Roussanaly, S. et al. (2020). Front. Chem. Sci. Eng., 14(3): 436-452. https://doi.org/10.1007/s11705-019-1870-8 7) Mulk et al. (2023). Journal of CO₂ Utilization, 75, 102555. https://doi.org/10.1016/j.jcou.2023.102555

CCS starts with a store

Figure 3.1-3:									
CCS project pipeline	Biomass to Power and Heat					• 19 •	0		
of operational commencement.	Cement					* ••0		•	0 0 0
	Chemical		•	•		;; 0	•••	00	۵
Capture, transport	CO ₂ Transport/ Storage				ė			•	
and/or storage capacity (Mtpa CO ₂)	Direct Air Capture					•••U	•		۷
0.2 1 5 25+	Ethanol		••	•		•	*		000
	Hydrogen/Ammonia/ Fertiliser	• •	•	•	•			•	0
	Iron and Steel Production			•			•		00
Early development	Natural Gas Processing	• •		•		••••••••••••••••••••••••••••••••••••••			00000
Advanced development	Oil Refining				•	•••	••		
In construction									
Operational	Power Generation and Heat		•			•••••		•	
Under evaluation		1972	2010	2015	2020	2021-2025	2026-2030	2031-2035	Timeframe ur

confirmed

GCCSI, 2023. Global Status of CCS.

https://www.globalccsinstitute.com/wp-

content/uploads/2024/01/Global-Status-of-CCS-Report-1.pdf

CCS starts with a store

Figure 3.1-3:

CCS project pipeline by industry and year of operational commencement.

Capture, transport and/or storage capacity (Mtpa CO₂)

GCCSI, 2023. Global Status of CCS.

https://www.globalccsinstitute.com/wp-

content/uploads/2024/01/Global-Status-of-CCS-Report-1.pdf

UK strategy for CCS deployment

- UK's industrial decarbonisation challenge ran from 2019 2024
- Provided £210M of public funding, leveraged £261M of industrial funding to support FEED studies
- HMG has adopted a "Cluster Sequencing" process with a combination of power and industry projects selected for Track 1
 - HyNet North West: hydrogen and industry
 - East Coast Cluster: power and hydrogen
- Track 2: Scottish and Humber clusters

a UKRI, 2024. Industrial Decarbonisation. https://www.ukri.org/what-we-do/browse-our-areas-of-investment-and-support/industrial-decarbonisation

b https://www.gov.uk/government/publications/cluster-sequencing-for-carbon-capture-usage-and-storage-ccus-deployment-phase-1-expressions-of-interest/october-2021-update-track-1-clusters-confirmed

c https://www.gov.uk/government/publications/cluster-sequencing-for-carbon-capture-usage-and-storage-ccus-track-2/ccus-cluster-sequencing-track-2-market-update-december-2023

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2015 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2015** Annual CO2 Supply (ktCO2/yr) **YEAR 2015** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV intercon. Import Scotland Scotland (Acorn) (Acorn) Teesside Teesside

Merseyside

(HyNet)

South Wales

0 62.5 125 250 Kilometers

(HyNet) South Wales Southampton Southampton A 0 62.5 125 250 Kilometers CO₂ supplied from CDR CO₂ supplied from CCS

Merseyside

Humberside

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Humberside

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2020 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2020** Annual CO2 Supply (ktCO2/yr) **YEAR 2020** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV intercon. Import Scotland Scotland (Acorn) (Acorn) Teesside Teesside Humberside Humberside Merseyside Merseyside (HyNet) (HyNet) **Total Power** Generation (TWh)

South Wales

0 62.5 125 250 Kilometers

< 1.00 1.00 - 10.00

> 40.00

.

10.00 - 20.00 20.00 - 30.00 30.00 - 40.00

260 Kilomete

Esri HERE DeLorme, Mapmylodia, © OpenStreetMap.contr

Base case

CO₂ supplied from CDR

Southampton A

 $\overline{CO_2}$ supplied from CCS

Southampton

South Wales

0 62.5 125 250 Kilometers

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2025 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2025** Annual CO2 Supply (ktCO2/yr) **YEAR 2025** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV Intercon. Import Scotland Scotland (Acorn)

Merseyside

(HyNet)

South Wales

0 62.5 125 250 Kilometers

(Acorn)

Base case

Teesside

Humberside

CO₂ supplied from CCS

Merseyside

(HyNet)

South Wales

0 62.5 125 250 Kilometers

Teesside

Southampton

Humberside

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2030 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2030** Annual CO2 Supply (ktCO2/yr) **YEAR 2030** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV Intercon. Import Scotland Scotland (Acorn) (Acorn)

Generation (TWh) 1.00 - 10.00 South Wales 10.00 - 20.00 20.00 - 30.00 30.00 - 40.00 0 62.5 125 250 Kilometers 260 Kilomete Esti HERE Dellorme Mapmyindia @ OpenStreetMap.cont

Base case

Total Power

< 1.00

> 40.00

.

CO₂ supplied from CDR

Merseyside

(HyNet)

CO₂ supplied from CCS

Merseyside

(HyNet)

South Wales

0 62.5 125 250 Kilometers

Teesside

Southampton

Humberside

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Teesside

Southampton A

Humberside

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2035 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2035** Annual CO2 Supply (ktCO2/yr) **YEAR 2035** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2040 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2040** Annual CO2 Supply (ktCO2/yr) **YEAR 2040** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV Intercon. Import Scotland Scotland (Acorn) (Acorn) Teesside Teesside Humberside Humberside Merseyside Merseyside (HyNet) (HyNet) **Total Power** Generation (TWh) < 1.00 1.00 - 10.00 South Wales South Wales 10.00 - 20.00 20.00 - 30.00 30.00 - 40.00

CO₂ supplied from CDR

0 62.5 125 250 Kilometers

> 40.00

65 130

......

260 Kilometer

Esri HERE Dellorme Mapmyladia @ OpenStreetMap contributors and the

Base case

CO₂ supplied from CCS

Southampton

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

0 62.5 125 250 Kilometers

Southampton A

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2045 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2045** Annual CO2 Supply (ktCO2/yr) **YEAR 2045** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV Intercon. Import Scotland Scotland

Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Sector coupling across power, industry & transport + Industrial cluster Potential CO₂ storage site **YEAR 2050 Power Generation** Annual CO2 Supply (ktCO2/yr) **YEAR 2050** Annual CO2 Supply (ktCO2/yr) **YEAR 2050** by Plant Type No CO2 No CO2 Nuclear 0 - 250 0 - 100 Coal 250 - 500 100 - 200 CCGT 500 - 750 OCGT 200 - 300 750 - 1000 300 - 400 CCGT-postCCS 1000 - 2000 Bio BECCS Wind-Onshore Wind-Offshore Solar PV Intercon. Import Scotland Scotland (Acorn) (Acorn) Teesside Teesside Humberside Humberside Merseyside Merseyside

Total Power Generation (TWh) < 1.00 1.00 - 10.00 10.00 - 20.00 20.00 - 30.00 30.00 - 40.00 > 40.00 35 130 260 Kilometer Esti HERE Dellorme Mapmylndia @ OpenStreetMap contribu

Base case

(HyNet) (HyNet) South Wales South Wales Southampton Southampton A 0 62.5 125 250 Kilometer 0 62.5 125 250 Kilomete CO₂ supplied from CDR CO₂ supplied from CCS Heuberger, C. F., Bains, P. K. & Mac Dowell, N. (2020) Applied Energy, 257, 113715. https://doi.org/10.1016/j.apenergy.2019.113715

Evolution of UK's CCS infrastructure

- Industrial clusters only account for 16% of total UK emissions
- 88% of the UK's point source emitters are "small", i.e., < 100 ktpa and dispersed
- Thus, key questions remain
 - How will the UK's CO₂ T&S infrastructure evolve?
 - What are the cost vs. scale trade-offs?

What does CCS "do"?

- CCS started out as a "clean coal" technology, and coal was (mostly) a baseload power generation asset
- CCS was also interpreted as being costly to build and costly to operate
- Therefore, baseload operation was deemed the obvious operating strategy
- However...

Energy system optimisation (ESO) framework

Heuberger, C. F., et al. (2016). Energy & Environmental Science, 9 (8), 2497-2510, Heuberger, C. F. & Mac Dowell, N. (2018). Joule, 2 (3), 367-370, Heuberger, C. F., et al. (2018). Nature Energy, 3 (8), 634-640.

Energy system optimisation (ESO) framework ESO

No one size fits all

*) Seasonality is defined as the standard deviation of the hourly electricity demand Inner and outer circles are 2020 and 2050 peak demand, respectively

Pratama, Patrizio, and Mac Dowell, iScience, 2022

Quantifying the value of CCS (JAMALI)

Pratama and Mac Dowell, IEA CCC, 2021

Value ≠ cost

Flexible CCS technologies provide the greatest value

Increasing understanding of the role of flexible CCS

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344. Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Increasing understanding of the role of flexible CCS

To accommodate intermittent renewables, fossil fuel power plants will need to operate flexibly.

01-Jan-50

08-Jan-50

15-Jan-50

22-Jan-50

29-Jan-50

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344. Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Increasing understanding of the role of flexible CCS

To accommodate intermittent renewables, fossil fuel power plants will need to operate flexibly.

Coordinate the balance between electricity demand and CO_2 capture requirements.

Typical modes of operation for fossil fuel-fired power plants in the UK

Mac Dowell, N. & Staffell, I. (2016). International Journal of Greenhouse Gas Control, 48, Part 2 (Flexible operation of carbon capture plants), 327–344. Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Development of optimal operation strategies

The use of solvent storage tanks involves high capital cost.

Alternatively, CO₂ can be "stored" within the amine liquid.

The time-varying solvent regeneration approach can be used to coordinate the degree of capture (DoC) with electricity price/demand.

Potentially more cost effective and profitable.

References: Mechleri, E., Fennell, P. S. & Dowell, N. M. (2017). International Journal of Greenhouse Gas Control, 59, 24–39. Mac Dowell, N. & Shah, N. (2015). Computers & Chemical Engineering, 74, 169–183.

Demonstrating flexible operation at TCM

Bui, Mac Dowell, et al., (2020). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control, 93, 102879.

Demonstrating flexible operation at TCM

Bui, Mac Dowell, et al., (2020). Demonstrating flexible operation of the Technology Centre Mongstad (TCM) CO₂ capture plant. International Journal of Greenhouse Gas Control, 93, 102879.

Which technology parameters matter?

The power system is	
changing	

"+" \rightarrow "+++" = low \rightarrow high value

*modelled as minimum stable generation point, up-/down time

Technology Feature	Value in future power systems			
High Efficiency	+			
High Flexibility*	++			
Low CAPEX	+++			
Dispatchability	+++			
Firm capacity/ancillary service provision	+++			
Low OPEX	+			
High Rate of Deployment	++			

The value of reliable low CI power

- Data centres and "AI" are very power hungry
- Getting a grid connection is increasingly difficult
- This is leading to hyperscalers (Amazon, Microsoft, etc.) seeking "direct wire" connections for power
- They are primarily seeking low/zero CI power, and this *must* be reliable power
- Historic preference for renewable energy
- But...

$MWh \neq MW$

Renewable energy is getting cheaper...

Wind, solar PPA prices have risen dramatically in recent years (\$/MWh)

Data acesssed Jan. 30, 2024.

PPA = power purchase agreement.

Shows lowest 25% of PPA offers across six wholesale energy markets in US and Canada for each technology. "Blended" is an aggregation of the lowest 25% of wind and solar PPA offers.

Source: LevelTen Energy.

© 2024 S&P Global

Costs continue to fall for solar and wind power technologies

Won't CCS be expensive?

- Expanding body of analysis demonstrates that, when considered across the entire value chain, the marginal cost of mitigation is negligible
- 1-2% on infrastructure, 1% on vehicles, 1% on buildings. Observed "green premium" on muni bonds is 0.023%
- See for e.g.,:
 - Rootzen and Johnsson, "Paying the full price of steel Perspectives on the cost of reducing carbon dioxide emissions from the steel industry", Energy Policy, 2016,
 - Rootzen and Johnsson, "Managing the costs of CO2 abatement in the cement industry", Climate Policy, 2017,
 - Karlsson, Rootzen, and Johnsson, "<u>Reaching net-zero carbon emissions in construction supply chains Analysis of a Swedish road construction project</u>", Renewable and Sustainable Energy Reviews, 2020,
 - Subraveti, et al "Is Carbon Capture and Storage (CCS) Really So Expensive? An Analysis of Cascading Costs and CO₂ Emissions Reduction of Industrial CCS Implementation on the Construction of a Bridge", 2023

Current questions on CCS

- Where is the store?
- What's the business model?
- Can you capture *all* the CO₂?
- Who can build it?
- Is there insurance?
- Can I finance it?

Some conclusions...

- No remaining debate as to the necessity for CCS question is simply about financeable business models.
- The role and value of CCS recognised in power, industry, low CI hydrogen/molecules, and CDR.
- Diversity in technology vendors provides competition and promotes innovation.
- Increasing understanding of the relative affordability of CCS across energy and industry

Remaining challenges

- Need standardised CO₂ quality and pipeline specifications.
- Expediting appraisal and development of CO₂ storage capacity.
- Social license is not 100% this leads to delays and/or rejection along the CCS chain, thus increasing costs.
- Regulatory barriers requiring IP disclosure, e.g., UK's solvent disclosure requirements by the Environmental Agency.

New opportunities for CCS

- New materials with resistance to degradation/VOC emissions, low water consumption, high purity CO₂ product stream
- Process and control technologies to support flexible operation
- "AI" is diving demand for baseload, low/zero CI power
- Modular technologies can both address terminal value risk and be applied to small point sources