Project Overview : DE-FE0031590

Description: Testing and evaluation of transformational non-aqueous solvent (NAS)-based CO₂ capture technology at engineering scale at TCM **Key Objectives:**

- Solvent energy requirements and capture efficiency
- Solvent degradation, corrosion, emissions
- Technoeconomic evaluation

Specific Challenges

- New unit technical and process risks
- Operate TCM plant within emission requirements
- Minimize rise in absorber temperature
- Maximize NAS performance with TCM plant configuration
- **Timeframe:** 8/8/18 to 03/31/24 **Total Funding:** \$17,584,062

Participants:

RTI NAS CO₂ Capture Technology Development History

From lab to large scale demonstration through series of projects

New coal-fired power plants with CO_2 capture at a cost of electricity 30% lower than the baseline cost of electricity from a supercritical PC plant with CO_2 capture, or approximately \$30 per tonne of CO_2 captured by 2030.

Path to Reducing ICOE and Cost of CO₂ Avoided

- Primarily focused on reducing energy consumption reboiler duty
- Reduce capital expenditure
 - Simplify process arrangement
 - Materials of construction
- Limit operating cost increase

¹ Rochelle, G. T. Amine Scrubbing for CO₂ Capture. Science **2009**, 325, 1652-1654.

Heat of vaporization of water becomes a negligible term to the heat duty

BP1 TCM Amine Plant and NAS Modifications

٠

- Amine plant modifications
- Leadership in detailed engineering, fabrication, and construction
- Process modeling expertise
- Excellence in operations

Absorber Modifications

٠

- One interstage cooler
- Equipment within budget
- Control temperature bulge at top to decrease emissions

Regenerator Mods

- Higher capacity pump for reboiler
- Force recirculation due to high boiling points of solvent components
- Equipment within budget

Completed Milestones

Task No.	MS No.	Milestone Description	Planned Completion Date	Actual Completion Date	Verification Method
1.0	1	Updated Project Management Plan (PMP)	Oct. 31, 2018	Sept. 5, 2018	PMP file
1.0	2	Project Kickoff Meeting	Oct. 31, 2018	Oct. 2, 2018	Presentation file
1.0	3	Initial TMP	Dec. 31, 2018	Dec. 31, 2018	TMP file
2.0	4	EH&S report as outlined in Appendix E of the FOA	Jan. 31, 2019	Jan. 31.2019	Topic report
3.0	5	Solvent qualification test results	July 31, 2019	January 17 th , 2020	Quarterly report
4.0	6	FEED study and cost estimate	Dec. 31, 2019	February 4 th , 2020	Quarterly report
5.0	7	Submit requisition for interstage cooler heat exchanger to fabricator	March 31, 2021	February 24, 2021	Quarterly report
5.0	8	Submission of purchase order to manufacturer for initial solvent fill	May 31, 2021	June 25, 2021	Quarterly report
5.0	9	Receive forced recirculation pump for regenerator for installation at host site	November 15, 2021	January 6 th , 2022	Quarterly report
6.0	10	NAS solvent batch (75 tons) delivered to TCM site	December 31, 2021	January 31, 2022	Quarterly report
5.0	11	Commissioning of the revamped unit	January 31, 2022	March 07, 2022	Quarterly report
7.0	12	Test reports for parametric and long-term testing in revamped capture unit together with an updated State Point Data Table as defined in Appendix A of the FOA	June 30, 2022	June 30, 2022	Quarterly report
8	13	Confirmation of decommissioning and waste handling	September 30, 2022	September 30, 2022	Quarterly report
9	14	Final TEA according to DOE guidelines	May 7, 2023	May 22, 2023	Topical report
10	15	EH&S report as outlined in Appendix E of the FOA	June 30, 2023	July19, 2023	Topical report
10	16	Maturation Plan and Technology Gap Analysis following DOE guidelines in FOA appendices	June 30, 2023	TMP: July 19,2023 TGA:	TMP file and Gap Analysis report
7.3	17	Updated State Point Data Table	June 30, 2023	July 20,2023	Quarterly Report
7.5	18	NO _x Report	June 30, 2023	July 19, 2023	Topical report

Test Campaign Segments and Flue Gas Characteristics

Flue Gas	CO ₂ (vol %)	O ₂ (vol%)	NO ₂ (ppm)	NO (ppm)	SO ₂ (ppm)
СНР	3.9	12.9	3.2	23.9	1.0
RFCC	14.7	2.4	1.2	66.5	0.0
CHP w/ Recycle	12.6	6 1	2.0	15 1	0.8
(RFCC Mimic)	12.0	0.1	3.0	45.4	0.0
RHP (aka MHP)	13.7	4.6	4.6	50.9	0.4
RHP w/ Recycle	19.0	4.6	5.0	2.4	0.0
(Cement Mimic)	10.0	4.0	5.0	5.4	0.0

Time on Stream Highlights

7

NGCC Performance: L/G Optimization

NGCC SDoE Parametric Testing Results

Test Conditions

Run	L/G Ratio (kg/kg)	CO₂ Capture Rate (%)	Regen Pressure (barg)
1	4.5	95	1.0
2	4.0	95	1.0
3	3.0	85	1.0
4	3.5	90	1.0
5	3.5	85	2.1
6	4.0	90	2.1
7	3.0	95	2.1
8	2.5	90	2.1
9	3.5	95	3.2
10	3.0	90	3.2
11	2.5	85	3.2
12	4.5	85	3.2

	Results							
Regenerat or Pressure (barg)	Capture Rate	L/G (kg/kg)	Reboiler Temp (Celsius)	Flue gas flow (Sm³/hr)	Observed T_approa ch (Celsius)	Observed SRD (GJ/t-CO ₂)	SRD (w/ 5C T approach) (GJ/t-CO ₂)	
1.0	95.1	4.8	97.3	26861	45.4	5.85	3.60	

sD N

sD N

sD N sD

sD

sD

sD N sD

sD N

sD N sD

lun	or Pressure (barg)	Capture Rate	L/G (kg/kg)	Temp (Celsius)	flue gas flow (Sm³/hr)	T_approa ch (Celsius)	SRD (GJ/t-CO ₂)	5C T approach) (GJ/t-CO ₂)
GCC DE01	1.0	95.1	4.8	97.3	26861	15.4	5.85	3.60
GCC DE02	1.0	95.4	4.2	95.7	26907	14.8	5.33	3.43
GCC DE03	1.0	85.0	3.1	89.2	26932	14.4	4.63	3.13
GCC DE04	1.0	90.3	3.7	90.5	26935	14.3	4.95	3.30
GCC DE05	2.1	84.9	3.7	95.0	26927	16.1	5.32	3.32
GCC DE06	2.1	90.3	4.2	96.9	26929	16.7	5.67	3.47
GCC DE07	2.1	95.1	3.2	102.4	26928	15.6	4.65	3.14
GCC DE08	2.1	89.8	2.6	100.7	26930	15.7	4.43	3.10
GCC DE09	3.2	95.5	3.7	107.5	26976	16.9	4.85	3.11
GCC DE10	3.2	90.5	3.1	104.5	26974	16.8	4.67	3.08
GCC DE11	3.2	85.3	2.6	104.7	26977	16.7	4.38	3.01
GCC DE12	3.2	85.3	4.7	99.6	26968	18.0	6.22	3.69

Impact			
Variable	Weight		
L/G	0.287		
Capture rate	-0.034		
Pressure	-0.025		

Coal Performance: L/G Optimization

Gas	L/G	L/G	Flue Gas	CO ₂	Regen	Reboiler	SRD
	(kg/k	(kg/S	flowrate	capture	Pressure	Temp	GJ/t-CO ₂
	g)	m ³)	(Sm³/hr.)	rate (%)	(bar,g)	(Celsius)	
CHP	5.4	7.0	28,420	89.7	0.96	94.3	2.67
CHP	5.3	6.8	28,994	90.0	0.96	94.8	2.66
CHP	4.7	6.1	28,443	89.9	0.96	97.2	2.66
CHP	4.0	5.2	28,205	90.5	0.95	100.5	2.65
CHP	3.0	3.9	28,103	90.0	0.95	105.4	2.60
MHP	6.1	7.7	27,847	91.0	3.17	106.3	2.59
MHP	5.1	6.5	27,863	90.4	3.17	110.0	2.55
MHP	4.1	5.1	27,854	89.6	3.16	115.1	2.53

Run	Stripper Pressure (barg)	Capture Rate	L/G (kg/kg)	Reboiler Temp (Celsius)	Flue gas flow (Sm³/hr)	SRD (w/ 5C Tapproach) GJ/t-CO2
RHP-1	3.2	91.0	6.11	106.3	21,982	2.59
Coal sDOE12a	3.2	95.0	6.52	107.0	21,982	2.59
CHC-2	3.2	97.1	6.11	112.2	21,982	2.61
CHC-3	3.2	97.6	6.11	113.9	21,982	2.63

Coal SDoE Parametric Testing Results

CCS2 Carbon Capture Simulation for Industry Impact

Run	Stripper Pressure (barg)	Capture Rate	L/G (kg/kg)	Reboiler Temp (Celsius)	Flue gas flow (Sm³/hr.)	SRD (w/ 5C Tapproach) GJ/t-CO ₂
sDOE01	2.6	90.7	4.0	113.6	21,982	2.57
sDOE02	2.6	92.0	3.5	119.8	21,983	2.55
sDOE03	2.6	90.1	4.5	110.3	21,978	2.59
sDOE04	2.6	95.0	5.5	108.3	21,982	2.59
sDOE05	2.1	94.6	4.0	113.4	21,982	2.59
sDOE06	2.1	90.4	6.5	98.9	21,982	2.58
sDOE07	2.1	90.5	3.5	114.6	21,981	2.53
sDOE08	2.1	95.2	4.5	110.3	21,982	2.60
sDOE09	3.2	95.3	4.0	120.4	21,981	2.58
sDOE10	3.2	90.7	5.5	107.9	21,982	2.57
sDOE11	3.2	90.9	3.5	121.0	21,981	2.55
sDOE12	3.2	95.0	6.5	107.0	21.982	2.59

Results

Test Conditions

Dum		CO ₂ Capture Rate	Regen Pressure
Run	L/G Ratio (kg/kg)	(%)	(bar,g)
1	4.5	95	1.0
2	4.0	95	1.0
3	3.0	85	1.0
4	3.5	90	1.0
5	3.5	85	2.1
6	4.0	90	2.1
7	3.0	95	2.1
8	2.5	90	2.1
9	3.5	95	3.2
10	3.0	90	3.2
11	2.5	85	3.2
12	4.5	85	3.2

Impact

Variable	Weight
L/G	0.011
Capture rate	0.013
Pressure	-0.002

Coal Long Term Testing

Ground level instrument house

Corrosion Testing Process Locations

- MOC coupon sample holders
- Flat and bent
- 3 carbon steels
- 3 stainless steels
- 1 resin

Corrosion Coupon Testing Results

Rating	Corrosion Rate (µm/yr)
Outstanding	<25
Excellent	25-100
Good	100-500
Fair	500-1000
Poor	1000-5000
Unacceptable	>5000

		Cold Lean (8" Line)	Cold Rich (6" Line)	Hot Lean (8" Line)	Hot Rich (6" Line)	Stripper Overhead (12" Line)
	CS 1010	-0.03 ± 0.06	-0.07 ± 0.08	383.02 ± 46.83	Lost	-0.51 ± 0.07
Carbon	CS 1018	-0.01 ± 0.14	0.01 ± 0.21	376.00 ± 10.84	956.22 ± 33.07	-0.27 ± 0.14
Steels	SA 516	0.18 ± 0.14	0.06 ± 0.21	343.21 ± 9.90	1167.12 ± 40.36	-0.37 ± 0.14
	SA 516 Bent	0.12 ± 0.07	-0.08 ± 0.08	414.97 ± 64.57	Lost	-0.09 ± 0.04
	Duplex 2205	-0.18 ± 0.14	-0.21 ± 0.21	-0.12 ± 0.14	-0.10 ± 0.21	-0.08 ± 0.14
Stainless	Duplex 2205 Bent	-0.07 ± 0.06	-0.07 ± 0.08	-0.03 ± 0.06	-0.06 ± 0.08	0.00 ± 0.04
Steels	SS 304	-0.02 ± 0.14	-0.01 ± 0.20	0.00 ± 0.14	0.03 ± 0.20	0.00 ± 0.14
	SS 304 Bent	-0.04 ± 0.06	-0.03 ± 0.08	-0.02 ± 0.06	-0.01 ± 0.08	-0.02 ± 0.04
	SS 316	-0.03 ± 0.14	-0.01 ± 0.20	0.00 ± 0.14	0.02 ± 0.20	0.00 ± 0.14
Resin	Ultem Resin	-33.24 ± 5.73	20.85 ± 4.30	Lost	Lost	22.37 ± 3.89

TEA Break-Even Summary of Cases

Power Plant		sc	PC			NG (F-Cla	CC ss CT)		NGCC (H-Class CT)							
Capture Rate, %	90	95	97	99	90	95	97	99	90	95	97	99				
Total Gross Power, MWe	762	756	763	774	692	689	687	687	946	942	939	939				
Net Power, MWe	657	648	653	650	647	641	635	631	888	880	872	866				
BEC for Capture System, \$MM	\$226	\$230	\$232	\$236	\$221	\$260	\$256	\$295	\$290	\$340	\$340	\$394				
TPC, \$MM	\$2,085	\$2,092	\$2,102	\$2,130	\$ 935	\$1,001	\$1,001	\$1,075	\$1,284	\$1,370	\$1,378	\$1,481				
TPC, \$/kW	\$3,175	\$3,229	\$3,219	\$3,277	\$1,444	\$1,562	\$1,576	\$1,705	\$1,445	\$1,558	\$1,580	\$1,711				
TOC, \$MM	\$2,558	\$2,567	\$2,579	\$2,613	\$1,166	\$1,246	\$1,247	\$1,336	\$1,599	\$1,704	\$1,743	\$1,837				
TOC, \$/kW	\$3,895	\$3,963	\$3,950	\$4,021	\$1,802	\$1,944	\$1,962	\$2,119	\$1,800	\$1,936	\$1,999	\$2,122				
LCOE (excl. T&S), \$/kW	\$92.60	\$94.60	\$94.30	\$96.00	\$59.80	\$62.50	\$63.00	\$65.70	\$58.60	\$61.00	\$61.90	\$64.50				
BESP, \$/t-CO ₂	\$30.50	\$30.50	\$29.80	\$30.60	\$47.70	\$52.00	\$52.00	\$57.30	\$47.40	\$51.10	\$51.80	\$57.50				

Table 6.1 RTI NAS Case Summary

Continuation of the Technology Development Path with DOE

FLECCS – Dynamic **Capture from NGCC** (2021-2024) Process

intensification to enable flexible capture, reduce capital expense

100 t-CO₂/day

TRL 2-3 arpa·e

NET NATIONAL ENERGY TECHNOLOGY LABORATORY

U.S. DEPARTMENT OF

International Paper slb

Projects currently underway or recently selected for negotiation

The entries (20, 61 / 24 (8 m)
Carbon Capture Pilot Plant
(2024-2029)
Carbon capture pilot plant at pulp and paper containerboard plant
400 t-CO ₂ /day
TRL 7

CLEAN ENERGY DEMONSTRATIONS

Office of

ENERGY EFFICIENCY & RENEWABLE ENERGY

TRL 4-5

Lessons Learned

- Trace emissions from solvent production may be present at start-up unless steps are taken during manufacturing to remove them.
- PTR-TOF-MS is an effective tool for quickly identifying volatiles and monitoring at low levels of emission.
- Oxidative degradation from NO_x produces volatile by products which must be managed. It appears this can be accomplished with an acid wash.
- Heat exchangers must be sized appropriately for NAS to optimize performance.
- High efficiency CO₂ capture from NGCC can be achieved with NAS with higher SRD and cost.

Commercialization with SLB

News Release

Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Published: 10/17/2022

A unique, versatile nonaqueous solvent

SLB and RTI International have partnered to industrialize and scale up an absorption-based carbon capture technology. The proprietary nonaqueous solvent (NAS) can be applied across a broad range of industrial sectors—from cement and steel manufacturing, coal and gas power generation, chemicals, and hydrogen.

With low energy consumption, simple process configuration, low corrosion chemistry, and fast reaction rates, NAS technology reduces energy consumption by up to 40% during CO₂ capture and minimizes both capex and opex compared with traditional solvents.

Read press release →

trett-ti

SLB exclusive licensor of the RTI NAS technology

RTI Non-Aqueous Solvent (NAS)-based CO₂ Capture at TCM (DE-FE0031590)

- >2,800 hours testing of coal and NGCC flue gases
- Utilized sDOE for most efficient parametric testing
- Achieved target SRD's
- Showed >99% capture CO₂ from NGCC
- Operated below emission limits
- Found low corrosion rates on carbon steel
- Conducted 12 TEA case studies (90-99% capture)
- Commercializing with SLB

SINTEF

Thanks! RTI's New Energy Technology Development Facility Expansion 2025

a little

Marty Lail, Ph.D. Senior Director, Decarbonization Sciences RTI International 3040 Cornwallis Rd. Research Triangle Park, NC 27709 919-485-5703 (o) 919-809-2204 (l)

TDF EXPANSIO

POND #

Gantt Chart

				BP2																					
#	Task title	Start	End	2020 2021							2022									20)23				
		date	date	11 12	1	23	4	56	7	8 9	10 1	1 12	1 2	3	4 !	56	7 8	9	10 11	12	1	2 3	4	5	6
1.0	Project Management and Planning	08/08/18	12/31/22							_															
	1.1 Test Agreement with TCM	08/08/18	09/30/20																						
2.0	EH&S and Risk Evaluation and Permitting	08/08/18	02/28/19																						
3.0	Solvent Qualification	03/01/19	01/31/20																						
4.0	Preliminary Design of a NAS Optimized System	08/01/19	07/31/20																						
	4.1 Pre-FEED	08/01/19	09/30/19																						
	4.2 FEED study	10/01/19	02/28/20																						
5.0	Revamp Implementation	10/01/20	12/31/21																						
	5.1 Detailed Engineering and Procurement	10/01/20	06/30/21																						
	5.11 Design Freeze	11/01/20	12/31/20																						
	5.12 Long Lead Items Ordered	01/01/21	02/12/21]																			
	5.13 Long Lead Items Received	02/12/21	09/01/21					1																	
	5.2 Interstage Cooler and Recirculation Pump Install	04/01/21	12/31/21																						
	5.21 Installation and Commisisoning	09/01/21	12/15/21																						
	5.22 Mod Project Closeout	12/15/21	12/31/21																						
6.0	Solvent Production	10/01/20	12/03/21																						
7.0	Test Plan Development, Testing, Data Analysis	01/01/21	06/30/22																						
	7.1 Modified Amine Plant Test Plan Development					-																			
	7.2 NAS Modified Amine Plant Testing																								
	7.3 NAS Modified Amine Plant Data Analysis																								
	7.4 EPRI Third Party Verification																								
8.0	Decommissioning and Waste Handling	07/01/22	09/30/22																						
9.0	Final TEA (550 MW Net)	07/01/22	12/31/22																						
10.0	Cost Benefit Analysis and Technology Mat Planning	10/01/20	12/31/22					1																	

Technoeconomic Analyses, 2023

SC PC 97% Capture

NGCC F-class 95% Capture

NGCC H-class 99% Capture

Plant	B12B.97-RTI NAS	Plant	B31B.95-RTI NAS	Plant	B32B.99-RTI NAS
Gross Size	763 MWe	Gross Size	689 MWe	Gross Size	939 MWe
Net Size	653 MWe	Net Size	641 MWe	Net Size	866 MWe
Capacity Factor (CF)	85%	Capacity Factor (CF)	85%	Capacity Factor (CF)	85%
Total As-Spent Cost/Total Overnight Cost Ratio	1.154	Total As-Spent Cost/Total Overnight Cost Ratio	1.093	Total As-Spent Cost/Total Overnight Cost Ratio	1.093
Fixed Charge Rate (FCR)	0.0707	Fixed Charge Rate (FCR)	0.0707	Fixed Charge Rate (FCR)	0.0707
Total Overnight Cost (TOC), \$MM	\$2,579	Total Overnight Cost (TOC), \$MM	\$1,246	Total Overnight Cost (TOC), \$MM	\$1,837
Total As-Spent Cost (TASC), \$MM	\$2,977	Total As-Spent Cost (TASC), \$MM	\$1,362	Total As-Spent Cost (TASC), \$MM	\$2,008
Fixed Operating Cost, \$MM	\$67.8	Fixed Operating Cost, \$MM	\$31.5	Fixed Operating Cost, \$MM	\$44.9
Variable Operating Cost @ 100% CF, \$MM	\$73.2	Variable Operating Cost @ 100% CF, \$MM	\$21.4	Variable Operating Cost @ 100% CF, \$MM	\$31.4
Fuel Cost @ 100% CF, \$MM	\$138.8	Fuel Cost @ 100% CF, \$MM	\$179.0	Fuel Cost @ 100% CF, \$MM	\$238.0
Annual MWh (100% CF)	5,720,222	Annual MWh (100% CF)	5,613,735	Annual MWh (100% CF)	7,582,958
LCOE Breakdown, \$/MWh		LCOE Breakdown, \$/MWh		LCOE Breakdown, \$/MWh	· · ·
Capital Charges	\$43.3	Capital Charges	\$20.2	Capital Charges	\$22.0
Fixed O&M	\$13.9	Fixed O&M	\$6.6	Fixed O&M	\$7.0
Variable O&M	\$12.8	Variable O&M	\$3.8	Variable O&M	\$4.1
Fuel	\$24.3	Fuel	\$31.9	Fuel	\$31.4
LCOE (excl. CO ₂ T&S), \$/MWh	\$94.3	LCOE (excl. CO ₂ T&S), \$/MWh	\$62.5	LCOE (excl. CO ₂ T&S), \$/MWh	\$64.5
CO ₂ T&S	\$10.0	CO2 T&S	\$3.7	CO ₂ T&S	\$3.8
LCOE (incl. CO ₂ T&S), \$/MWh	\$104.3	LCOE (incl. CO ₂ T&S), \$/MWh	\$66.2	LCOE (incl. CO ₂ T&S), \$/MWh	\$68.3
Breakeven CO ₂ Sales Price, \$/t-CO2	\$29.8	Breakeven CO ₂ Sales Price, \$/t-CO2	\$52.0	Breakeven CO2 Sales Price, \$/t-CO2	\$57.5