

#### CO<sub>2</sub> Capture at LG&E Cane Run NGCC Power Plant DE-FE0032223



Adam Berger Principal Technical Leader

2024 Carbon Management Research Project Review Meeting Pittsburgh August 5<sup>th</sup>, 2024

 in
 X
 f

 www.epri.com
 © 2024 Electric Power Research Institute, Inc. All rights reserved.

#### **Acknowledgement and Disclaimer**

 Acknowledgment: "This material is based upon work supported by the Department of Energy Electric Power Research institute Inc. under Award Number DE-FE0032223.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."





#### **Project Overview**

- FEED study for retrofitting the LG&E (a PPL Corporation Facility) Cane Run Unit 7, a 640 MW NGCC located in Louisville KY, with the University of Kentucky's solvent-based carbon capture system
- Funding = \$7,3303,164. DOE \$5,842,517 + Cost-share \$1,460,647
- Project performance dates 12/22/2022 8/31/2025



Source UK

Source PPL

## **Project Team**

- **EPRI**: Non-profit, electric sector R&D; prime
- Louisville Gas and Electric & Kentucky Utilities, a PPL Company (PPL): owners of Cane Run Unit 7 NGCC plant located just SW of Louisville, KY along the Ohio River
- University of Kentucky (UK) Carbon capture technology developers
  - Vogt Power International: HRSG OEM, subcontractor to UK
  - ALL4: Performing EH&S, subcontractor to UK
- Bechtel: Performing Front-End Engineering and Design (FEED)
- University of Michigan: Global CO<sub>2</sub> Initiative for LCA



666

#### **UK CCS Process**

- Aqueous amine solvent
- Split lean solvent feed to absorber
  - 95% capture rate
- Split rich solvent feed to stripper
  - Reboiler duty 1040 BTU/lb (2.42 MJ/kg)
- In-duct water spray flue gas cooling
  - Reduced capital cost



Source UK

## **UK CCS Experience**

- Active research since 2006
- Technology validated and scaled up from lab to pilot scales
- >10,000 operational hours on coal and simulated-NGCC flue gas
- Solvent with \$6.5kg/chemical cost, 0.6 kg/tonne CO<sub>2</sub> makeup rate, and Aspen Plus<sup>®</sup> model experimentally verified at pilot scale



Bench CCS

H3-1

**CCSL** 

Solvent

Campaign

CAER

Process

H3-1 Solvent Performance:  $\sim 27\%$  reduction in solvent regeneration energy, 35-45% Solvent reduction in circulation rate, Campaign low degradation compared to 30 wt% MEA

> CCSL Solvent Performance: ~30% reduction in solvent regeneration energy, 40% reduction in circulation rate, low degradation compared to 30 wt% MEA

• CAER Solvent Performance: ~20% reduction in solvent regeneration energy, 30% reduction in circulation rate. Solvent low degradation compared Campaign to 30 wt% MEA • Solvent Cost <\$5/kg chemical

• Absorber Temperature Control via discretized packing Modificatio • În-situ liquid redistributor

- Solvent spray with <50 μm droplets leads to 2.6-4.1X?increased CO2 absorption per unit volume
- Staged feed to Absorber and Stripper Heat Integration with steam
- cvcle feedwater • Solids circulation solvent
- recovery system reduces amine emissions by 50%

Lab CCS

Nitrosamine Removal

## Cane Run 7 – Host Site

- Location: Louisville, KY
- Capacity: 640 MW
- Fuel: Natural Gas
- **Opened:** 2015
  - Cane Run 7 is Kentucky's first natural gas combinedcycle (NGCC) generating unit
- Retirements:
  - Coal units 1 through 6 were demolished in 2019
- Capacity Factor:
  - ~ ~85% from 2016-2021



Source LGE-KU/PPL

## **Pre-FEED Completed**



- >95% equipment/process service factor
- Baseload condition based on historic & forecasted generation data
- Solvent-independent design
- Design for reliability and operability
- Full-plant integration and CT operation impact analysis

- Vogt Power on team to analyze:
  - Impact on HRSG operations
  - In-duct cooling, without DCC
  - Elimination of flue gas boost fan, with HRSG accommodating additional pressure
  - Best steam extraction location and impact on steam cycle

Completed

EPR

#### **Design Heat and Mass Balance**



## **Energy Consumption**

| Without CCS Gross Power Output                                     |           | Cane Run Study | Rev 4 Case 31B |
|--------------------------------------------------------------------|-----------|----------------|----------------|
|                                                                    | kW        | 699,026        | 740,000        |
| Estimated other Balance of Plant                                   | kW        | 16,040         | 14,000         |
| Cane Run without CCS Net Power                                     | kW        | 682,986        | 727,000        |
| With CCS Gross Power Output                                        |           |                |                |
|                                                                    | kW        | 659,545        | 690,000        |
| CO <sub>2</sub> compression                                        | kW        | 18,200         | 17,090         |
| Flue gas boost fan for CCS island                                  | kW        | 0              | 10,600         |
| Estimated $CO_2$ Capture Auxiliary (pumps etc) excluding boost fan | kW        | 7,400          |                |
| Estimated other Balance of Plant                                   | kW        | 16,040         | 16,372         |
| Estimated Net Power Output                                         | kW        | 617,905        | 646,000        |
| Total derate                                                       | kW        | 65,081         | 81,000         |
|                                                                    | %         | 9.3%           | 10.9%          |
| CO2 Capture Rate                                                   |           | 95%            | 90%            |
| CO2 Captured @ 95% efficiecny                                      | t/hr      | 227            | 224            |
| Energy Penalty                                                     | KWh/t CO2 | 286.8          | 361.6          |

Process and integration improvements result in expected >20% reduction in energy penalty per kg  $CO_2$  captured compared to NETL Bituminous Baseline rev. 4 Case 31b

#### **Initial LCA Results**

# 95% of CO<sub>2</sub> captured reduces **CO**<sub>2</sub> emissions by ~90%





#### **Initial LCA Results**



 GWP reduction from CCS, but all other impact categories increased as additional built environment / fuel use required.





## Next Steps: Feed Study

- FEED submission
- Reviews and revisions
- Class 3 cost estimate
- Transportation and logistics
- Quantity takeoffs
- Schedule
- Construction plan/Story boards
- Engineering, procurement and construction implementation plan
- Vendor quotes
- Material requisitions/RFQ'S

- Model Development (CAD)
- Layout
- Equipment lists
- Equipment designs/Selection
- Piping and Instrumentation Diagrams (P&ID's)
- HazOp
- Revised P&ID's
- Uncertainties Log
- Risk register
- Management control and reports



## **Community Benefits and Societal Impacts**

- Planned evaluation of community impacts:
  - Environmental co-benefits of CO<sub>2</sub> capture
  - Workforce development and jobs creation
  - Economic impact
  - Development of community engagement strategy
- Societal Impacts
  - Accelerating decarbonization through de-risking CCS
  - All information to be made public except confidential vendor information
  - Potential for lowering energy and capital costs of CO<sub>2</sub> capture

#### **Lessons Learned**

- Design philosophy of reliability and operability has increasing importance for real-world deployment
- Increasing backpressure on gas turbine possible mechanism to eliminate FD fan
  - Requires collaboration between GT supplier, HRSG, and carbon capture
- Optimization of steam extraction point from NGCC requires full HRSG and steam turbine models
  - Modification possible, but important to bring in OEMs to understand repercussions from performance and service agreements



## The FEED study will guide CCS scale up

- Evaluate the impact of the carbon capture process on:
  - Power delivery and cost for full scale deployment
  - The operation and possible modifications to the HRSG and steam turbine.
- Land and Permit Requirements
  - This includes the CCS system layout and long-term planning for possible future NGCC units at the site.
- Evaluation of Local Storage and Pipeline Options
- The FEED learnings combined with planned 20 MW demonstration capture unit will inform CCS at Cane Run Unit 7



## Summary

- FEED study for retrofitting the LG&E (a PPL Corporation Facility) Cane Run Unit 7, a 640 MW NGCC located in Louisville KY, with the University of Kentucky's solvent-based carbon capture system for 95% CO<sub>2</sub> capture
- Pre-FEED nearly complete with promising performance estimates
- All results to be made public other than confidential vendor information



Source PPL





## **TOGETHER...SHAPING THE FUTURE OF ENERGY®**

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved