

PROJECT DELTA (DE-FE0032149)

Front-End Engineering and Design for a CO2 Capture System at Calpine's Delta Energy Center

Andrew Awtry, Ph.D.

PROJECT OBJECTIVE

Project Period of Performance:

February 1, 2022 – October 31, 2024* *No Cost Extension Pending to February 28, 2025

Funding:

Federal Share:	\$6,983,840
Cost Share:	\$1,745,961

Objective:

Complete a FEED for a commercial-scale carbon dioxide (CO₂) capture facility retrofitted onto an existing natural gas combined cycle (NGCC) power station. The project team has designed and costed a CO₂ capture facility retrofitted onto Delta Energy Center (DEC), an 857 MW facility in Calpine's fleet.

ION TECHNOLOGY

Proprietary Solvent

- Liquid amine-based capture
- Low aqueous
- WW Patents

Reduced CAPEX & OPEX

- Smaller columns, HXs and footprint
- · Lower energy requirements

Established Engineering Process

Pilot Performance Metrics

- Low Regeneration Energy
 - $\,\circ\,$ Fast kinetics
 - Working capacity
 - o Low heat capacity
- Low Tendency for Corrosion
- Low Degradation Rate

PROTREAT PROCESS MODEL

ION CO₂ Capture Process Key features of ION process compared to 'common' MEAdesigned plant

- Cold-Rich By-pass
- Optimized lean rich cross exchanger (LRXC) design
- Utilize heat integration from compression to lower energy requirements

ProTreat® output provides stream tables, key performance indices, and steam, cooling and electrical duties

PROJECT TEAM MEMBERS

ION Clean Energy

- Award Recipient
- Technology Provider
- Process Design and Project Management

Calpine

- CALPINE[°] Host Site & Subrecipient
 - Power Generation Engineering, Operational and **Financial Expertise**

Sargent and Lundy

- Capture Island Process Oversight, Engineering & Costing
- Balance of Plant Engineering & Costing
- **Overall Cost Estimate Development**
- **Engineering Studies Lead**

	Sigmons Energy
	Contactor Design & Costing Support
ENGINEERED SOLUTIONS	Gas/Liquid Contactor Vendor

Siemens Energy

- Compressor Technology Provider
- CO₂ Compressor Design & Costing Including Heat Integration

Koch Engineered Solutions (KES)

Kiewit

- **W**Kiewit Owners Engineer
 - Document Review

KOCH

SIEMENS

energy

Toshiba America Energy System (TAES)

- Steam Turbine OEM
- Evaluation of Steam Extraction

A HAMON BRAND

Deltak

- HRSG OEM
- Evaluation of Flue Gas Duct Tie-in

PG 5

E

ш

D.

Ľ

ш

Z

ш

Z

Œ

ш

.

L) Z

STATEMENT OF PROJECT OBJECTIVES

Task 1 – Project Management

Task 2 – Overall Project Design Basis

- Subtask 2.1 CCS Design Basis
 - CCS Design Basis/Design Criteria
 - Carbon Capture System Requirements Document
- Subtask 2.2 System Design Description
 - System Design Description including BOP

Task 3 – Process Design – CO₂ Capture Island

- Subtask 3.1 Preliminary Design of the Carbon Capture Island
 - Process Flow Diagrams, Heat and Material Balance, Utility Summary, Preliminary Equipment List, a Theory of Operation, and a refined set of requirements with support from performance models and system analyses.
- Subtask 3.2 Detailed Design of the Carbon Capture Island
 - Detailed Equipment List supported by vendor data sheets, Controls Description, Emissions and Effluent List, Capture System P&IDs and an Equipment Layout Plan

PG b

STATEMENT OF PROJECT OBJECTIVES

Task 4 – Engineering and Design

- Subtask 4.1 BOP Systems Design
 - Design work supporting Site Plan, Foundation, Ductwork, Structural Steel, Steam Turbine Tie-In, Heat Rejection System, Pipe Racks, Building/Architecture, Electrical Systems, General Arrangement Drawings and a Preliminary 3D Model
- Subtask 4.2 System Level Engineering
 - System level engineering packages including the system level Heat and Water Balances, P&ID's and resulting Equipment, Piping, Instrument and Electrical Load Lists

Task 5 – Supplemental Studies and Investigations

- Including
 - Steam and Power Sourcing Study
 - Cooling Water and Optimization Study
 - Reliability, Availability and Maintainability (RAM) Analysis
 - Hazard and Operability Review (HAZOP)
 - Constructability Review

E

Ш

D.

Щ

Z W

Z

L E E

U Z

STATEMENT OF PROJECT OBJECTIVES

Task 6 – Cost Estimating

- Subtask 6.1 CO₂ Capture Island and BOP Capital Costs
- Subtask 6.2 Operating & Maintenance Costs
- Subtask 6.3 Overall Cost Estimate and Cost of Capture

Task 7 – Final Reporting & DOE Deliverables

- Subtask 7.1 FEED Study
- Subtask 7.2 Additional Required DOE Deliverables:
 - Life Cycle Analysis
 - Business Case Analysis
 - Techno-Economic Analysis
 - Economic Revitalization and Job Creation Outcomes Analysis
 - Environmental Justice Analysis

KEY MILESTONES

#	Corresponding Task	Title/Description	Target/ <mark>Actual</mark> Completion Date	Verification Method
M1	1.0	DOE Kickoff Meeting	06/13/2022	Presentation Slides
M2	1.0	Updated PMP	02/28/2022	PMP Transmitted to DOE FPM
М3	2.0	Basis of Design for Project Finalized	05/31/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M4	3.0	Preliminary Design Review Complete	05/10/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M5	4.0	Critical Design Review Complete	09/13/2022	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M7	5.4	HAZOP Complete	11/29/2022	HAZOP Report Completed
M8	6.0	Overall Cost Estimate and Cost of Capture	08/31/2023	Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE
M9	7.0	Front-End Engineering Design (FEED) Report	10/31/2024	Report Delivered to DOE/NETL
M10	7.0	Final DOE Report & Presentation	10/31/2024	Report Delivered to DOE/NETL

PG 9

DELTA ENERGY CENTER

Location:

• Pittsburg, CA

Facility Type:

- 3 x 1 NGCC
- Siemens W501F CTs
- Deltak HRSGs
- Toshiba ST

Additional Site Information

- Evaluating terraced uplands on adjacent property SW of Delta as potential capture location
- Land south of the facility is currently not available for Carbon Capture System
- DDSD provides makeup water to base plant

Œ

SYSTEM DESIGN

CO₂ Capture Plant: Capture System Design

- 2x 50% trains for the Capture Island
- 2x 50% on major pieces of equipment to assist in turndown and provide some risk mitigation
- Designed to match full DEC load and support the desired DEC turndown
- Designed for 95% capture of CO_2 ; resulting in up to 98% capture at turndown
- CO_2 product at expected Capacity Factor: 2.4M tonnes of CO_2 /yr

Ξ

Ш

D

2 Z

W Z

Œ

Ш

LU.

Z

PG 11

SYSTEM DESIGN

CO₂ Capture Plant: BOP Design

- Steam Sourcing
 - Worked with the Steam Turbine vendor to optimize and evaluate consequences of extraction at various locations
- Heat Rejection System
 - Utilize consumptive water available from DDSD and DCC blowdown
 - Sufficient water available for fully evaporative cooling system
 - 2% Summer occurrence temperature was used for the basis for design
- Flue Gas Tie-in
 - Worked with vendor (Deltak) to design tie-in point and consolidate HRSG stack flows

Œ

ш

Ľ

Ш Z Ш

Z

Z

Plot Plan – General Arrangement

ш LI.

Œ

כו

Щ

Z

ш

Z

Æ

Ξ

Ш

באכ≺

E

Ш

CLEAN ENERG

Ξ

Ш

ON CLEAN ENERG

PG 17

Œ

ш

ш

ш

z

Ш

LJ.

Z

COST ESTIMATE BASIS

CAPEX in 2023 USD

- Vendor Budgetary Quotes for all major pieces of equipment
- Labor wages: Prevailing wages for Sacramento, CA with a Regional Labor Productivity of 1.15
- Include Additional Labor Indirect costs (labor supervision, show up time, cost of overtime, per diem, insurance)
- Includes Site Overhead costs (construction management, field office, craft support, pre-op testing, site services, safety, temp facilities and utilities, mobilization/demobilization and legal expenses)
- Includes Construction Indirect costs (small tools and consumables, scaffolding, freight on equipment, freight on materials, sales tax)
- Includes Project Indirect Costs (EPC engineering services, EPC CM support, Startup and spare parts, EPC G&A, EPC Risk and Profit, Initial Fills)
- Includes Contingency: 15% on all categories (Labor, Equipment, Materials, Subcontracts, Construction Equipment, and Indirect Costs)

COST ESTIMATE BASIS

OPEX in 2023 USD

- Variable OPEX:
 - Power costed at \$30/MWh
 - Steam costed as lost electricity to the grid (de-rate)
- Fixed OPEX:
 - 26 Operators and support staff required
 - 40-hr work week for 52 wks/yr
 - Maintenance Material and Labor Costs estimated using 2.5% of the sum of equipment, materials and 60% subcontract costs

Z

Ξ

DELTA ENERGY CENTER FEED WRAP-UP

- Cost Estimate:
 - CAPEX \$1,500,000,000
 - OPEX \$61,600,000/yr
- Completed the Required Analyses:
 - Life Cycle Analysis
 - Business Case Analysis
- Techno-Economic Analysis
 - Completed as required by the FOA directions using the NGCC case (Case 31) but,...
 - Sized at 500,000 tpa, which does not allow for comparison to Case 31B.
 - Using TEA from the Enterprise Project, we get the following comparison to 31B in 2019 USD:
 - 27% reduction in CAPEX
 - 12% reduction in O&M
 - Cost of Capture is 28% lower than case 31B

- Revitalization and Job Creation Outcomes Analysis
- Environmental Justice Analysis

Œ

Z

Æ

ы.

THERMAL STORAGE IMPLEMENTATION STUDY

ЕЦТА

N E

Z C U

U N O

THERMAL ENERGY STORAGE (TES) MODIFICATION

THERMAL STORAGE PROJECT TEAM MEMBERS

ION Clean Energy

- Award Recipient
- Technology Developer
- Process Design and Project Management

COLORADO STATE UNIVERSITY

Colorado State University Subrecipient

- Net Present Value Evaluation of Thermal Storage Implementation
- Detailed Modeling of Thermal Storage impact on CCI Availability and Base Plant Dispatch profiles

• Host Site & Subrecipient

Power Generation Engineering, Operational

Storworks Power

- Thermal Storage Technology Developer
- Engineering and Costing of Thermal Storage process

Sargent and Lundy

and Financial Expertise

- Capture Island Process Oversight, Engineering
 & Costing
- Balance of Plant Engineering & Costing
- Overall Cost Estimate Development
- Engineering Studies Lead

Z

THERMAL ENERGY STORAGE (TES) MODIFICATION

Task 2: Modeling and Optimization

- ION evaluated higher capture rates with fixed and optimal absorber heights.
- S&L scaled capture island design down to two CT/HRSG feeding one ST for the base facility.
- CSU leveraged modeling tools to recommend an optimized TES configuration for DEC, based on historical grid price and any operating expectations provided by Calpine.

Task 3: TES Component Level FEED

- Storworks conducted FEED level engineering design and cost estimation for all TES system components.
- Storworks performed detailed thermal modeling of TES module to determine relevant time constraints and performance metrics.
- CSU updated the optimization model

Ξ

ш

THERMAL ENERGY STORAGE (TES) MODIFICATION

Task Descriptions	Q1		Q2			Q3	
	April	Мау	June	July	Aug	Sept	Oct
DEC TES Modeling and Optimization							
TES Component Level FEED							
TES System Integration							
Cost Estimating							
NGCC-SWITCC Performance Modeling							
Sensitivity Analysis							

Tasks	Date	Resources
Task 1: Project Management	April 2024	ION & All
Task 2: DEC TES Modeling, Optimization	June 2024	CSU, ION, S&L
Task 3: TES Component-level FEED	June 2024	Storworks
Task 4: TES System Integration FEED	Aug 2024	ION, Storworks, S&L
Task 5: Cost Estimating	Sept 2024	S&L
Task 6: SWITCC Performance Modeling	Oct 2024	CSU
Task 7: Sensitivity Analysis	Oct 2024	CSU & All
Final Project Report	Oct 2024*	ION

*There is currently a NCTE Request through February, 2025 to allow for adequate review time for the Final FEED Reporting.

PG 24

ACKNOWLEDGEMENT & DISCLAIMER

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0032149.

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

PG 26

ЕЦТА

NERC

ш

Z

O N C L E

_

AUG 28, 2023