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Development of Geological Storage of CO,

Courtesy of Statoil
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Seismic Monitoring at Sleipner Demonstrates Imaging and
Contalnment of the 002 Plume

[Chadwick et al., GHGT-9, 2008]
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Multiple Trapping Mechanisms Contribute to Storage Security
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Storage security increases over time!

Time since injection stops (years)
IPCC, 2005




Risk Profile Over Time for Geological Storage

Acceptable risk (regulatory requirements)

Design Basis
* Site characterization and selection

* Active and abandoned well completions
* Storage engineering

*

Risk Profile Over Time
* Primary trapping during injection
* Performance prediction and monitoring
* Pressure recovery and secondary Frapping decreases rlisl-: over rir'nle

Health, Safety and
Environmental Risk
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Confidence Building Toolkit

Static and

Site dynamic : : Monitoring
characterization storage SflrtaGrr?ee\lfs g:l'(%n construction methods and
technology reservoir protocols requirements

modeling

Tested and Validated Methods Build Confidence for Developers, Investors, and the Public




2020’s: Al Assisted Storage Assurance

Static and

Site dynamic : : Monitoring
characterization storage SflrtaGrr?ee\lfs g:l'(%n construction methods and
technology reservoir protocols requirements

modeling

Faster, more accurate and probabilistic prediction of project performance and assurance.




Al Assisted Work Flows Quantify Uncertainty Associated With
Geological Heterogeneity

Same permeability at well, same correlation lengths, different realizations

Permeability map Permeability map




CCSNet.ai: Basin-scale 3D Reservoir with Multiple Injection
Well Dataset using Local Grid Refinement Technique
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Wen, Gege, et al. "Real-time high-resolution CO2 geological storage prediction using nested
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Gas Saturation Prediction with 1.8% relative plume error

welll well2 well3

St=30y

t=30y 2600
z r4
2000
105%
g J
1800 e il = = R -, b
~ < ‘ ""‘"—V 2600 ' \i s ; =S
S - S z ¢ z . z 210(\ Al i Ao
2000 A i !
6
= s ot ST TT 60* 6 %5
5 2 2 s .
10¥ 5% ) ™ y ¢ 205, - y R kx '
\\‘{D\L Sox o 47 o Ok

l-oz ® l—u.z ol )5* .—0.2

11 Wen, Gege, et al. "Real-time high-resolution CO2 geological storage prediction using nested Fourier neural operators." Energy & Environmental Science 16.4 (2023): 1732-1741.



Gas Saturation Prediction with 1.8% relative plume error

welll well2 well3
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11 Wen, Gege, et al. "Real-time high-resolution CO2 geological storage prediction using nested Fourier neural operators." Energy & Environmental Science 16.4 (2023): 1732-1741.



Example of Probabilistic Plume Prediction

Realization 1

One well log Plume Map :
500 realizations
2.5 seconds

Realization 2

Plume Map  © 3

Probabilistic CO, Plume Prediction

Probability of
CO, Migration
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To try it out, go to https://ccsnet.ai/
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2020’s: Laying The Foundation for 2050

2020's
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2030’s

*About 5 Gt/year CCS
needed by 2050

*100 x scale-up

2 x growth rate compared
to the past decade

*Modern IT and knowledge
systems needed for data,
modeling, decision
support, monitoring,
compliance...

Global Scale-
Up

2050’s

| total net CO2 emissions
»nnes of CO,/yr

In pathways limiting global warming to 1.5°C

with no or limited overshoot as well as in

pathways with a higher over: shoot CO2 emiss|
are reduced to net zero globally around 2050.

Four illustrative model p

IPCC, 2018

Massive
Deployment
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