

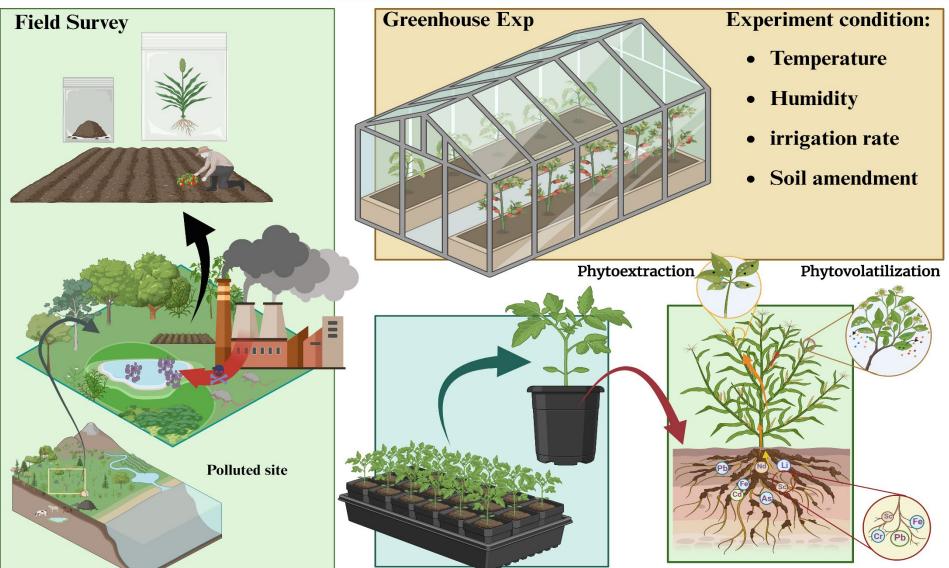
University of Nevada, Reno

Sustainable and cost-effective phytoremediation technologies in the management of contaminated soils adjacent to a coal combustion product impoundment <u>FE0032195</u>

Mohsen Rabbani and Ehsan Vahidi, University of Nevada, Reno

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview



Dr. Ehsan Vahidi (PI) Mohsen Rabbani (PhD student) Frida Muthoni (PhD student) **Participants** Trista McLaughlin (Undergrad student) University of Nevada, Reno, NV Energy (Industrial Partner) Operator of North Valmy power plant, Humboldt County, Nevada **Duration Project Overview** 3 years Fund \$396,835 - <u>Develop low-cost methods leading to keeping</u> **Objectives** contaminants within CCPs (coal combustion ponds) - advance environmentally friendly technologies 2 remediating affected sites.

Technology Background

University of Nevada, Rend

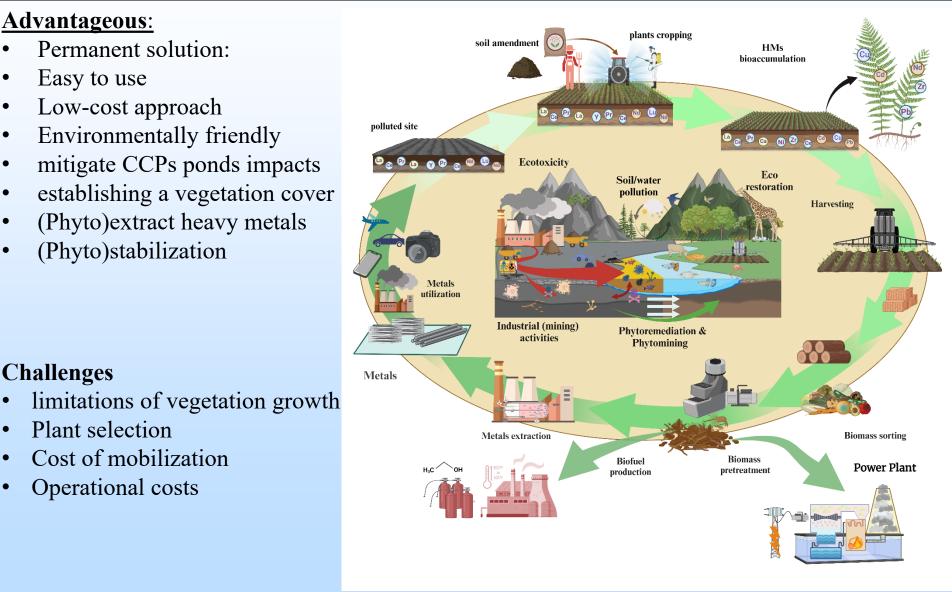
Phytostabilization

Technology Background

University of Nevada, Reno

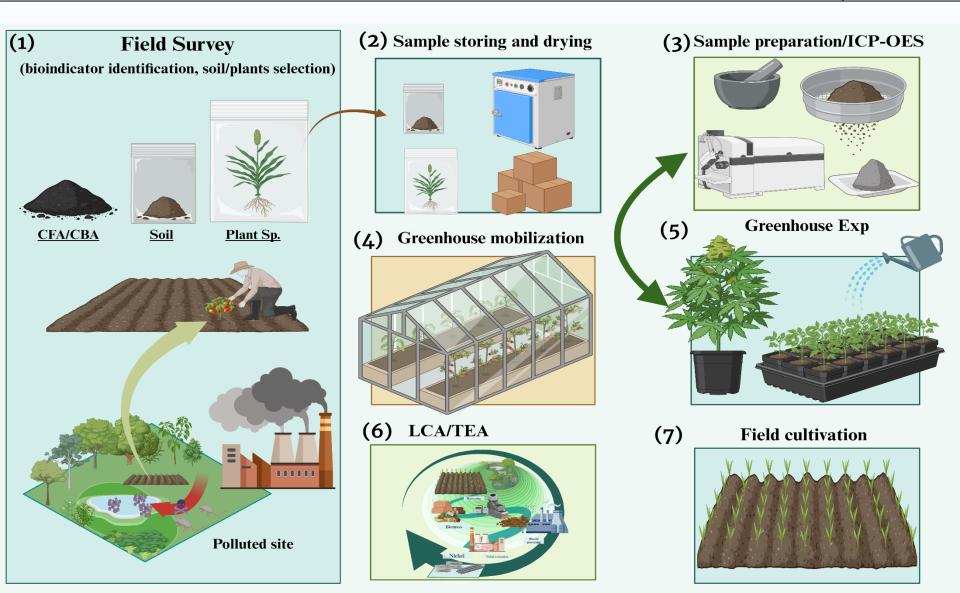
No	Coal source	HMs	Plant species	Amendment	Results		
1	CFA	Mn, Cu, Zn, Fe and Cr	Sida acuta Burm. f. and Cassia tora (L.) Roxb	fly ash (50%)	High tolerance of selected plants		
2	CFA	As, B, Cu, Mo and Se	Dactylis glomerata	On CFA pond	high adaptive potential to As stress a good As phytostabilizator		
3	CFA/ CBA	As, B, Ba, Be, Co, Cd, Cr, Cu, Mo, Pb, Sr, Ti, Tl, and V	(barley (<i>Hordeum</i> <i>vulgare</i>), oats (<i>Avena</i> <i>sativa</i>), wheat (<i>Triticum</i> <i>aestivum</i>)	FA and/or FA + BA	Reducing germination rate		
4	CCA	Cd, Pb, Zn and Cu p	Populus tremula L, Betula pendula Roth, Solidago virgaurea L.	In-situ sampling	High ability of these species for phytostabilisation		
1. Panda, D., Mandal, L., & Barik, J. (2020). Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for							
2.							
-	Sown on Fly Ash Deposits. Plants. Bilski, J., et al. (2012). Agro-toxicological aspects of coal fly ash (FA) phytoremediation by cereal crops: effects on plant germination,						
	growth and trace elements accumulation. Advances in bioresearch, 3(4), 121–129. 4 Szwalec A, Mundała P, Kędzior R. Suitability of Selected Plant Species for Phytoremediation: A Case Study of a Coal Combustion Ash						
-	Landfill. Sustainability. 2022;						

Technology Background


٠

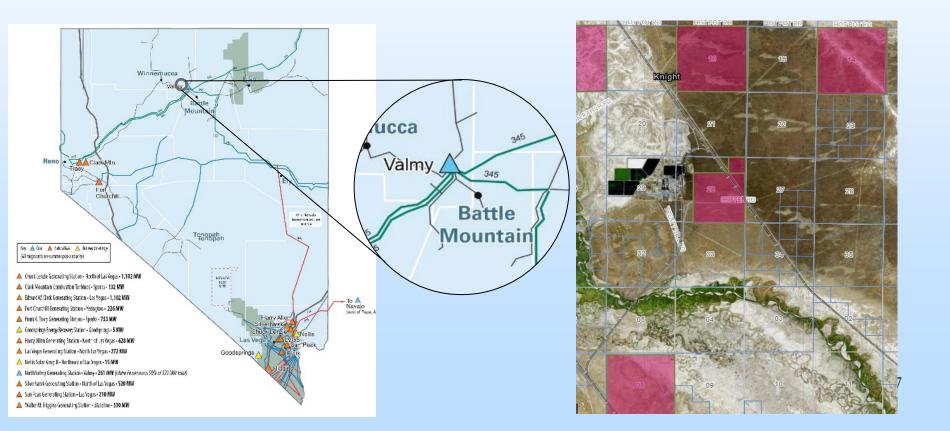
٠

٠


•

University of Nevada, Reno

Technical Approach Tasks and subtasks.



University of Nevada, Reno

Site selection for field survey:

- Soil sampling
- Native plants identification

University of Nevada, Reno

Equipment used/built in the project Unmanned Aerial Vehicle (UAV): Field Survey, plant coverage **First field survey:** May 2023

Detected plant species

x			
Plant species	Scientific name	Plant species	Scientific name
Rubber rabbitbrush	Ericameria nauseosa	Coastal sagebrush	Artemisia californica
redstem filaree	Erodium cicutarium	Quack grass	Elymus repens
bristly fiddleneck	Amsinckia tessellata	Goosegrass	Eleusine indica
flixweed	Descurainia sophia	lemongrass tea	Cymbopogon citratus
reed grass	Calamagrostis	tufted hair grass	Deschampsia cespitosa
White Horehound	Marrubium vulgare	western mug wort	Artemisia ludoviciana
basin wild rye	Leymus cinereus	vetiver	Chrysopogon zizanioides
Wood Betony	Stachys officinalis	Sorrel	Rumex acetosa
Durango Beargrass Tree	Nolina durangensis	Chee Grass	Stipa splendens
Switchgrass	Panicum virgatum	wheatgrass	Elymus trachycaulus
squarrose knapweed	Centaurea virgata	wild carrot	Daucus carota L

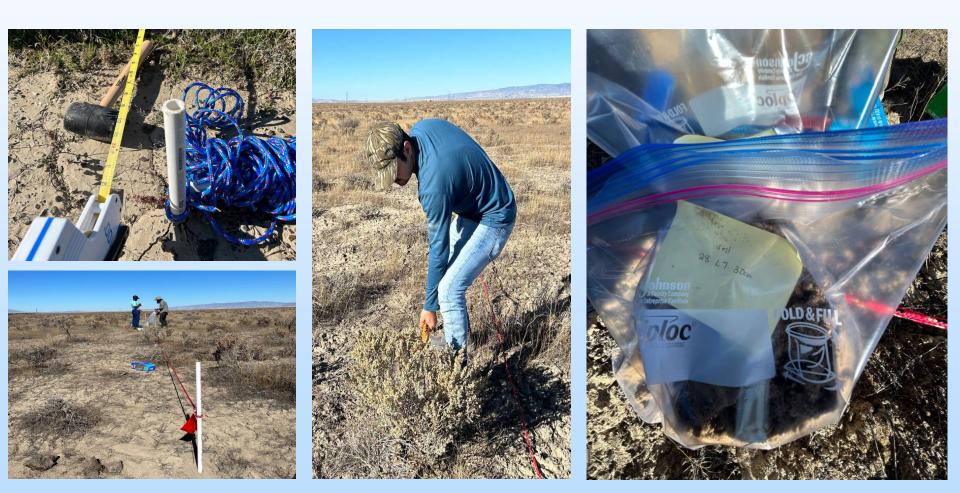
Equipment used/built in the project

Greenhouse selection: mobilization of the greenhouse for experiments

University of Nevada, Reno

Equipment used/built in the project unmanned aerial vehicle (UAV): Field Survey, plant coverage Second field survey:

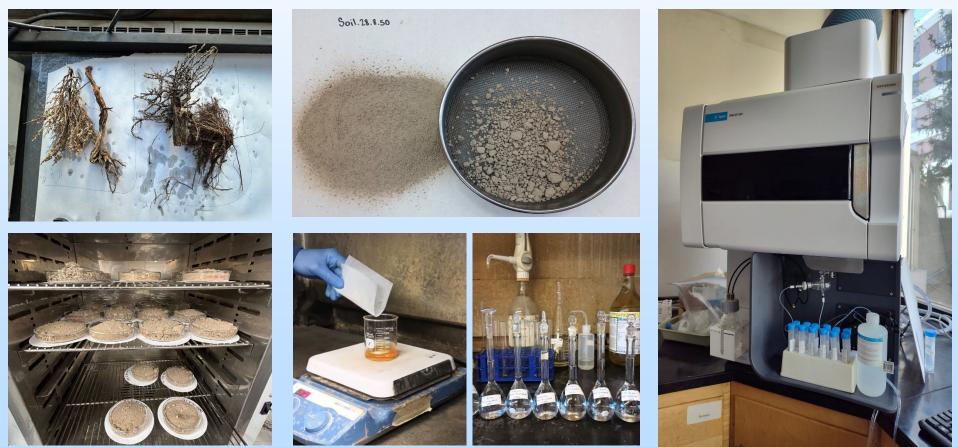
- November 2023
- 300 pictures from each site


Area 28

Area 16

University of Nevada, Reno

Field survey: Plant/soil sampling



University of Nevada, Reno

Sample preparation/ ICP-OES

- Incineration of plant samples
- Digestion of soil

University of Nevada, Reno

Greenhouse Mobilization

Irrigation system

Lessons Learned

- An interdisciplinary study of mining, environment, and agriculture
- Drone-based plant identification and monitoring
- Provide a comprehensive database for hyperaccumulators
- use the highly sensitive spectrometric technique (ICP-OES)
- Published a review paper

 Contents lists available at ScienceDirect

 Bioresource Technology

 journal homepage: www.elsevier.com/locate/biortech

Review

Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction

Mohsen Rabbani^{a,1}, Mohammad Taqi Rabbani^{b,1}, Frida Muthoni^a, Ying Sun^c, Ehsan Vahidi^{a,*}

^a Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA

^b College of Agriculture, Balkh University, Balkh, Afghanistan

^c The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

In this project

- The selected hyperaccumulators will be cultivated in the Area of Interest
- Investigation/development of an integrated process to produce metals After this project
- Development of the process.
- Optimization of factors affecting the process.

Scale-up potential

• This process can be scaled up as a phytomining process to produce metals from hyperaccumulators

University of Nevada, Reno

- a. Learning opportunities from this project
 - 1. Drone-Based Plant Identification and Monitoring
 - 2. ICP-OES Analysis for Heavy Metals and Rare Earth Elements
 - 3. Soil and Plant Sample Processing Techniques
 - 4. Field Surveys and Ecological Assessments
 - 5. Greenhouse Experimentation
- b. Next steps:
 - 1. Finding hyperaccumulators with high accumulation and suitable for metals
 - 2. LCA/TEA on the entire process

c. The project is advancing towards developing efficient, low-cost phytoremediation methods for CCPs, with significant progress in research, field surveys, and training, laying a strong foundation for future environmental restoration efforts.