Task 2: Tools, and Methods to Manage Subsurface Risks

Mohamed Mehana

2024 FECM / NETL Carbon Management Research Project Review Meeting

August 8, 2024

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the presenter do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgment

Lawrence Livermore National Laboratory

LANL: Meng Meng, Hichem Chellal, Hyeonseok Lee, Jinchuan Hu and Mohamed Mehana.

LBNL: Abdullah Cihan, Chris Doughty, Pramod Bhuvankar, Tayo Omosebi and Liange Zheng.

LLNL: Jaisree Iyer.

NETL: Brian Strazisar, Gavin Liu, Greg Lackey, Nate Mitchell, Robert Dilmore, Veronika Vasylkivska, Paul Holcomb, Shaparak Salek, Mina Rezkalla, Jarret Wise **PNNL:** Christopher Brown, Diana Bacon, Seunghwan Baek, Leon Hibbard, Delphine Appriou, Sophie Baur, Jennifer Frame, Ivan Aldana.

Objective To demonstrate and improve the utility of NRAP integrated assessment model and workflows for GCS leakage and containment decision making.

mm

BERKELEY LAE

os Alamos

Objective To demonstrate and improve the utility of model and workflows for GCS leakage an

EY20	EY21	EY 2022	EY 2023	EY 2024
NRAP Phase Open-IAM	Code o plan fo e II &	development of Impro or site-scale IAM proto	oved well leakage models, type AOR and bowtie work Complete simulation interpretation for ini	Improved use flowsintegration v ns and results Co tial case studies in
Recommen Practices	ded	• NRAP integrated assess model initial public bet	a release Model secon	ated assessment 🛃 d public beta releas Comple

NRAP releases a new version of NRAP-Open-IAM, an integrated assessment model for geologic carbon storage sites

June 11, 2024

Read More

el second public beta release assessment model v1.0 release

Complete report on recommended practices for site-scale leakage risk assessment/decision support

Outcome: Release final NRAP site-scale leakage risk assessment tools,

tool application catalog/use cases, and recommended practices

BERKELEY LAE

CHNOLOGY

.os Alamos

Pacific Northwes

VATIONAL LABORATOR'

Updates to NRAP-Open-IAM (1) – Wellbore Leakage

•Multisegmented Wellbore AI: machine-learning wellbore leakage model with an improved performance.

•Wellbore Leakage Model for Hydrocarbon Fields.

7

Pacific Northwest

NATIONAL LABORATORY

Los Alamos

.....

BERKELEY LA

ECHNOLOGY

BORATORY

Updates to NRAP-Open-IAM (2) - SALSA

(km)

Northing

SALSA: flexible model capable of modeling the responses of reservoirs, other aquifers, aquitards, and wellbores to injection and/or extraction.

- •SALSA produces:
 - -Well leakage
 - -Leakage across aquifer-aquitard interfaces
 - -Hydraulic head and pressure in aquifers and aquitards

Updates to NRAP-Open-IAM (3) - Bowtie

Bowtie plot: risk assessment visualization tool that combines quantitative and qualitative metrics for a wholistic evaluation.

Updates to NRAP-Open-IAM (4) - Workflows

•Workflows Integrated into Graphical User Interface: Workflows are made to <u>streamline analyses that are</u> <u>frequently performed</u> for activities such as permit applications.

- -Area of review analysis
- -Time to first detection analysis

odel	Stratigraphy	Add Workflow	
dd V	/orkflow		
Vorkflow	/ type:	Area of Review 🛁	Add Workflow
Reservoir	Туре:	Lookup Table Reservoir	
Vellbore	Type:	Open Wellbore	
Aquifer T	ype:	FutureGen2 Aquifer	
Aquifer L	ayer:	aquifer2	

Add and set up the workflow to be simulated, then save the model and return to Dashboard to runthe simulation.

Save

Return to Dashboard

Area of Review Workflow

How far do potential impacts extend from the injection site(s)?

Time to First Detection Workflow

How do contaminant plumes spread through aquifers? When would they reach monitoring wells?

NATIONAL

ECHNOLOGY

ABORATORY

rrrrr

BERKELEY LAB

Los Alamos

Pacific Northwest

NATIONAL LABORATORY

Stakeholder needs (1): Legacy Wells Characterization Workflow

Stakeholder needs (2): NRAP Risk Register Tool

- A new tool will allow users to develop a Risk Register for their carbon storage site(s). The tool contains a library of risks commonly found at carbon storage sites but also allows users to efficiently input additional risks pertinent to their site(s).
- The risk library was externally peerreviewed by carbon storage experts and suggested edits were considered and implemented where appropriate.
- A prototype available for demonstration purposes.

Risk	Register				All Projects / Project ABC 🖍 / Pre-Co	nstruction 🛩	L. L	JSER GUIDE
٩	Search all field:	s		OpEx CapEx Time	Health Safety Environment Public Relations Compliance	\mp all filters		
	tank 🖃	Risk Score 🖃	ID =-	Risk Statement 🖃		Status 🖃	Consequence Category =	
0 1			B-1	Area of Review is large requir	ring excessive corrective actions to be performed.	N/A	CapEx Compliance Environment He OpEx Public Relations Safety Time	calth
D 2	2	-	B-2	Improperly abandoned legac	y wells may create leakage pathways.	N/A	CapEx Compliance Environment He OpEx Public Relations Safety Time	ealth)
	Risk	Register						
				0 D				
				B-1				
				Automatically generated				
				Risk Statement *				
Area of Review is large requiring excessive corrective actions to be performed.								
SELECT FROM RISK LIBRARY								
Risk Owner ③								
Uperator Who is ultimately responsible for managing this risk?								
				Inherent Risk (2)				
	Category Consequence					Severity		
					·			
CapEx				CapEx	Variance from plan is at least 75%		•	4
	Compliance Major breach of regulation. Potential for severe fines and/or litigation				ation	•	4	
		Environment Minor environmental impact and/or technical compliance breach			•	1		
Health		Health	Transitory health impact •			1		
OpEx				OpEx	Variance from plan is at least 25%			2

À Los Alamos

.....

New Functionality (1): Physics-Based CO2 Well Blowout Model

Motivations

- A physics-based model to estimate **CO**₂ leaked in the event of **catastrophic well failure** from an **insurance claims** point of view.
- To understand the **thermal impacts** of **CO**₂ **cooling** on casing and cement during dense-phase CO₂ decompression.

Demo Scenario: Injection Well Blowout

• 14 day blowout of a 1500m deep well after 1 year and 6 months of injection into a 30 m thick reservoir of permeability 100 mD.

New Functionality (2): CO₂ Fault Leakage ROM Model

• Challenge:

Current Fault leakage models are limited.

• Solutions:

New ML model with a wide range of parameters (+20).

	Min	Max	
Angle_degrees	20 / 95	85 / 160	degree
top_depth	1000	3000	ft
domain_depth	1000	3000	ft
reservoir_deep_X ₂	1000	4000	dt
reservoir_deep_Z ₂	5	40	% of Domain depth
reservoir_shallow_X ₁	1000	4000	ft
reservoir_shallow_Z ₁	5	40	% of Domain depth
reservoir_y	1000	2000	ft
perm_fault	20	100	mDarcy
poro_fault	5	20	%
thick_fault	2	10	% of Domain depth
perm_caprock	1	5	mDarcy
poro_caprock	0.5	1	%
thick_caprock	3	20	% of Domain depth
perm_deep_reservoir	20	100	mDarcy
poro_deep_reservoir	5	20	%
perm_shallow_reservoir	20	100	mDarcy
poro_shallow_reservoir	5	20	%
injection_rate	1000	5000	Mscf/day
well_index_X₃	50	5000	(distance (x-axis) from fault)
injection_time	10	100	year

New Functionality (3): Multisegmented Wellbore Model

Expansion of Simulation Dataset

: To improve the applicability and robustness of the MSW-AI model for wellbore leakage analysis, we have expanded our simulation dataset:

- Original dataset: ~13,000 realizations
- Enhanced dataset: ~(13,000 + 15,000) realizations

Multisegmented Wellbore Model – AI Model Development

Data Processing for AI Model

: The previous MSW model relied solely on data from the immediately preceding step for predictions. In our new version, 1e-5 we are evaluating whether incorporating 1.5 -R2 = 6.644e-01Brine leakage MSE = 2.148e-13 information from multiple previous MAE = 2.735e-0 Input 1.0 steps enhances prediction accuracy. kg/s ate, 0.5 edicted leakage 0.0 Pre Features -0.5 -1.0 $^{-1}$ 1e-5 True leakage rate, kg/s 0.0006 R2 = 9.887e-01CO₂ leakage MSE = 4.761e-11 MAE = 3.295e-0 0.0005 0.0004 Input 0.0003 Static features 0.0002 **Dynamic features** 0.0001 Targets Features 0.0000 Lookback Forecasting 0.0002 0.0004 0.0006 0.0000

MSW Model Structure

ECHNOLOGY

BORATORY

BERKELEY LA

: Previously, the MSW model was developed with 7 component models to improve the prediction accuracy, and it was streamlined into 2 models for a new version.

Pacific Northwest

NATIONAL LABORATORY

Influence of reservoir settings (geology, fluid composition, environmental variables, operational parameters, etc.) on the AOR of GCS in saline aquifer (CO_2 + brine) is well understood. Repurposing CO_2 -EOR fields to dedicated GCS poses a new challenge—How is AOR impacted by previous CO_2 operations in oil and gas fields?

- 1D Radial, Three-phase, Five-component Reservoir Model
 - ✓ Constant CO_2 injection rate: 30-year injection, 50-year post injection
 - ✓ Initial conditions of components after CO_2 -EOR:
 - \circ < 5 km of injection well (2000 scenarios)
 - ✓ S_w ranges between 0.2 0.8
 - ✓ X_{CO2} ranges between 0.05 0.3
 - ✓ X_{CH4} ranges between 0.05 0.3
 - ✓ X_{C4H10} ranges between 0.1 0.3
 - ✓ X_{C10H22} ranges between 0.15 0.75
 - \circ > 5 km: no dissolved components

Determination of the Area of Review (AOR) Extent

Los Alamos

fic Northwest

NATIONAL LABORATOR

rrrrr

BERKELEY LA

CHNOLOGY

BORATORY

Machine-Learning-base Reduced-Order Model (ROM) for AOR Extent

ROM developed for the combined AOR extent successfully represents combined AOR behavior during the pressure buildup, plume development (which has been masked by pressure), pressure dissipation, and plume stabilization periods.

Main Insights from Reservoir Simulation

- Explored reservoir response for various scenarios that can support stakeholder decision-making for Class II to Class VI transition.
- Designed scenarios for hydrocarbon and saline reservoirs comparisons and boundary condition impacts
- □ Preliminary Results and considerations for risk assessment
 - ✓ The union of the CO₂ plume and AOR is the primary consideration based on the critical pressure calculation and mapping
 - \checkmark Reservoir depletion status.
 - ✓ Model domain coverage may impact the AOR, especially for the saline case.
 - ✓ Boundary conditions impact of the AOR for such structure as a secondary consideration

New Functionality (4): Wellbore integrity for Class II to Class VI

Injection rates for Class II wells range from 0.01 to 1 kg/s, while Class VI wells reach up to 30 kg/s. High injection rates lead to significant wellbore cooling, inducing wellbore failures.
The worst scenario is injecting CO₂ rapidly into depleted reservoirs during winter seasons.

Wellbore Integrity for Transitioning Class II to Class VI

- •How the material degradation affects cement integrity, how do leakage pathways get initiated and grow, what is the corresponding leakage rate, and do such leakage rates present a risk?
- • CO_2 flow across microannulus might expand its fracture size, and the dynamic CO_2 injection and problematic cementing job will accelerate this process. The riskiest scenario is a combination of engineering, mechanical and chemical alterations to the cement integrity.

Cement becomes more brittle and easier to be damaged after degradation

Case Study 2: Acid Gas Disposal - Reservoir Type

The dominant storage mechanism was affected the most by the type of storage reservoir where 80 to 90% of the injected gas was trapped in solution in the depleted oil fields, and 50 to 60% was trapped as residual gas in the saline aquifer while around 55% stayed as free mobile gas in the depleted gas reservoir

Reservoir Boundary Effects

Area of Review (AoR)

Injection Composition Effects

Thank you!

Comments and Questions:

<u>Mzm@lanl.gov</u> <u>Nrap@netl.doe.gov</u>

NRAP Website: https://edx.netl.doe.gov/nrap/

Case Study Selection and Model Setups

Base reference of the formation for model generalization

Isdiken, B., Thesis, The University of Texas at Austin, December 2013

Scenario Design

- •1 Mt/year of injection target rate
- •Single well, 30 years injection, and 50 years post-injection
- •CO2 interaction with hydrocarbon reservoir
- •CO2 interaction with saline reservoir conditions for comparisons
- Boundary condition impacts

Jia W. and McPherson B., DOI: 10.18141/1465116

	Injection Cases	Reservoir Conditions	Boundary Conditions
Scenario 2	Dedicated CO ₂ injection (1 MT/year)	Hydrocarbon reservoir	One side open
Scenario 3	Dedicated CO ₂ injection (1 MT/year)	Hydrocarbon reservoir	All sides open
Scenario 4	Dedicated CO ₂ injection (1 MT/year)	Saline reservoir	One side open
Scenario 5	Dedicated CO ₂ injection (1 MT/year)	Saline reservoir	All sides open

Liu G., Dilmore R., Strazisar B., Lackey G., Class II to Class VI Well Operations -Insights from Simulation-Based Investigation of CO2-EOR to Dedicated Storage Scenario. United States: N. p., 2023. Web.

Average Reservoir Pressure Profile in Tertiary CO₂ EOR Period

- Reservoir pressure in CO2 EOR period became lower from secondary EOR
- Over the depleted condition, reservoir pressure lower than the MMP, 1850 psi
- During injection period, reservoir pressure buildup in saline reservoir is much quicker than hydrocarbon reservoir
- Overall, hydrocarbon reservoir pressure buildup is slower and lower, but the reservoir pressure is higher due to more CO2 storage in it.

Boundary Flux Profile

- Pressure and flux response in saline reservoir is much quicker than hydrocarbon reservoir
- Major reasons result in the differences are the miscible flow with CO2 and compressibility of the fluids

