

Uinta Basin Carbonsafe II: Storage Complex Feasibility

Ting Xiao Research Assistant Professor Energy & Geoscience Institute, University of Utah August 8th, 2024 ting.xiao@utah.edu

Uinta Basin CarbonSAFE

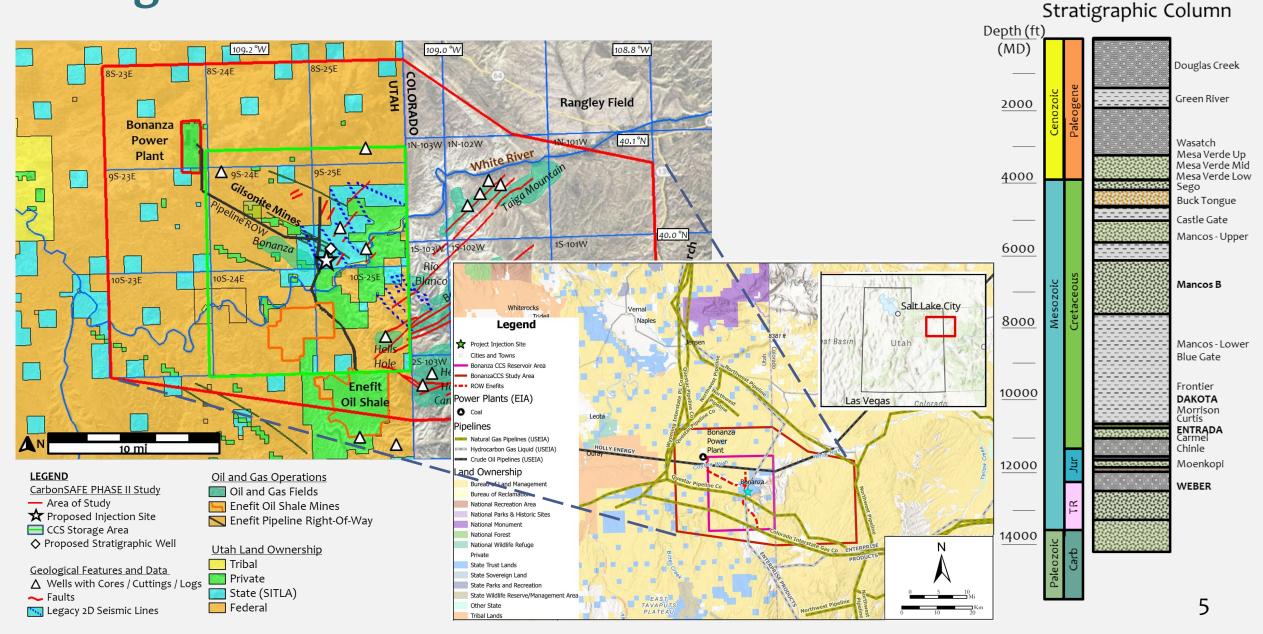
Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Uinta Basin CarbonSAFE II: Storage Complex Feasibility under Award No. DE-FE0032266.

We acknowledge our project manager, Ashley Urosek, and the management team, for their great support.

Our Project Team

Key Personnel

Collaborative Institutes


Project Goals

Uinta Basin CarbonSAFE II: Storage Complex Feasibility

To establish the technical and economic feasibility of a <u>commercial-scale CO_2 geological storage complex</u> in the east <u>Uinta Basin</u>, Utah, to securely and economically sequester <u>50 million metric tons of captured CO_2 over <u>30 years</u>.</u>

Regional Overview

Tasks and Leadership

Task 1 Project Management

- Management
- Reporting
- Project Coordination

Ting Xiao

Erin Middleton

Task 2 Community Benefits Plans 🚺

- DEIA
- Justice40
- Public Engagement
- Workforce Engagement

Task 3 Site Characterization

- Data Evaluation
- Strat Well Drilling

Michael Vanden Berg Carlos Vega

Task 4 Modeling & Simulation

- Model Development
- Storage Capacity
- Storage Scenarios
- AoR

Task 5 Risks & Mitigation Plans

- Non-Technical Risks
- Leakage
- Induced Seismicity
- Transportation Risks
- Risk Mitigation Plans

Task 6 CO, Management & Monitoring Plan

- CO₂ Management Plan
- CO₂ Monitoring Plan

Uinta Basin

Los Alamos

Bailian Chen

CarbonSAFE

Sai Wang Maohong Fan

Task 7 Subsequent Characterization & JUC Class VI Permitting Plans

New Mexico Tech

- Site Characterization Plan
- UIC Class VI Permitting Plan

Michael Vanden Berg Sai Wang

Task 8 Technical & Economic Feasibility Evaluation

- CO₂ Source Viability
- CO₂ Transportation Options
- Economic Feasibility

THE OF

Tasks 1. Project Management and Planning

Project Website:

https://egi.utah.edu/uinta-basin-carbonsafe/

Events:

- Field Trip: January 23rd, Bonanza, Utah
- Project Kick-off Meeting: January 24th, Vernal, Utah

Tasks 1. Project Management and Planning

Advisory Board Members

Richard Powell UIC Program Manager, Utah Division of OGM

Tyler Esplin Sr. Engineer, **Deseret** Power

SITLA Tyson Todd Area & Lease Manager, SITLA

Former State Legislator, State of Utah

Craig Brown General Manager, American Gilsonite

Seth Lyman Director, **Bingham Research Center**

Enefit Ryan Clerico Chief Executive Officer, Enefit American Oil

Travis Campbell Director, Uintah County Economic Development

Seth Taylor Director of Energy Services, Uintah Basin Technical College

STATE

ÚBTECH

Tasks 1. Project Management and Planning

Publications

Uinta Basin

CarbonSAFE

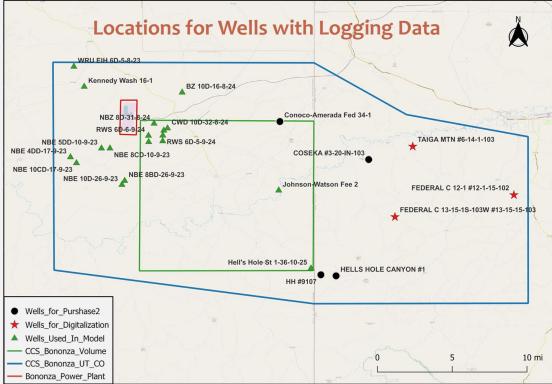
- Vega-Ortiz, C., Moodie, N., Vanden Berg, M. D., Xiao, T., McPherson, B., Geological feasibility and volumetric estimation for CCS project in the Uinta Basin, USA. Mitigation and Adaptation Strategies for Global Change, Under review.
- Xiao, T., McPherson, B., Bakelli, O., Cheng, S., Zhu, D., Xu, L., Middleton, E., A review of public perceptions and engagement for carbon capture, utilization, and storage. Renewable Sustainable Energy Rev., Under review.
- Xiao, T., Vega, C., Moodie, N., Vanden Berg, M. D., Blanchard, F., McPherson, B., Uinta Basin CarbonSAFE Phase II: An overview. AGU Fall Meeting, San Fransisco, December 11-15, 2023.
- Xiao, T., McPherson, B., Tian, H., Early-Stage Risk Assessment for a Potential Commercial-Scale Geological Carbon Storage Site in Utah, USA. The 37th International Geological Congress, Busan, Korea, Aug 25-31, 2024.
- Xiao, T., Birgenheier, L., Vanden Berg, M. D., Vega-Ortiz, C., Moodie, N., Middleton, E., Wang, S., Middleton, R., Fan, M., Chen, B., McPherson, B., Research Overview of the Uinta Basin CarbonSAFE Phase II Project. GSA Annual Meeting, Anaheim, California, Sep 22-25, 2024.
- Melnyk, S., Birgenheier, L., Vanden Berg, M.D., St. Pierre, G., Bailey, N., submitted. Evaluating the CO2 storage potential of the Entrada Sandstone in the eastern Uinta Basin, Utah. Rocky Mountain Section – American Association of Petroleum Geologists, Park City, Utah, Oct 6 – 8, 2024.

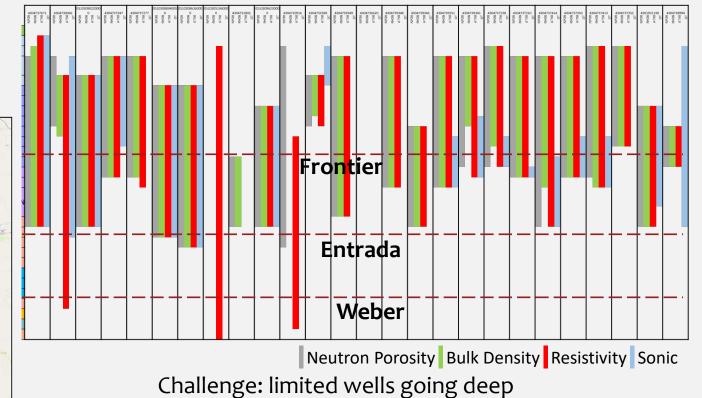
Tasks 2. Community Benefits Plans

Task Progress

CBP component	Activity	Due date	Progress
Community and Labor Engagement	Create an advisory board.	First 90 Days	Advisory board attended the Kick-Off meeting and has on- going consultation with project PI.
	Establish multiple engagement opportunities, including project website, informational videos, engagement with advisory board, and routine outreach events.	End of project	Creating Stakeholder Matrix to inform engagement; Creating student-led information videos; Attending local conferences; Meeting with regional educational orgs
Investing in Job Quality and a Skilled Workforce	Develop a course in CCUS with a focus on geologic sequestration, will be available to students and professionals as part of the development of EGI's new Resilient Energy Certificate program.	End of project	Class completed in Spring 2024; Viability of certificate program in Fall 2025.
Diversity, Equity, Inclusion, and Accessibility	Organize training related to DEIA and principles in community-based research (CBR).	First 60 days	Task leads and students completed Best Practices in Community-Based Research projects training.
	Attend training organized by the UU on working with tribal governments, with special emphasis on long-term planning and energy.	Middle of project	Slated for Fall 2025.
	Employ students or researchers from underrepresented communities/underrepresented groups in the STEM workforce.	End of project	Students are working this summer; helping to create videos.
Justice40 Initiative	Create a geodatabase of stakeholders, physical data, geographic data, and demographic data to facilitate understanding of areas of concern to the community.	60 days before end of project	Collaborating with UGS and UU staff to understand existing and proposed work.

Tasks 2. Community Benefits Plans

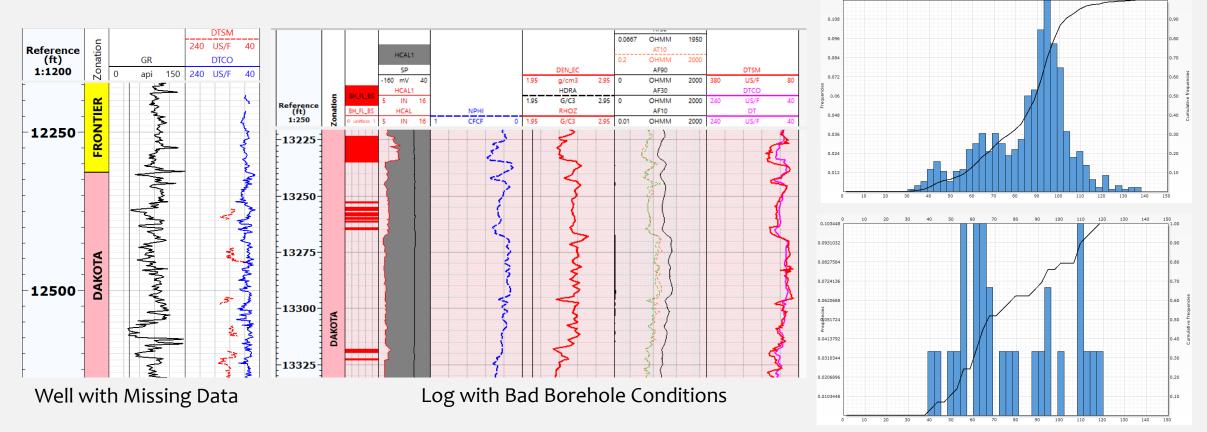

Organization Name	Type of Engagement	Time	Event
Ute Tribe Education Department	Community input/Education	1/18/2024	Office visit and discussion
Uintah Basin Technical College	Community input/Education	1/18/2024	Office visit and discussion
Utah Petroleum Association	Community input	3/12/2024	Attended their conference
Utah Division of Oil, Gas and Mining	Technical assistance	3/21/2024	Uintah Basin Oil & Gas Collaborative - project update
Utah Office of Energy Development	Energy policy developer	5/8/2024	Office visit and discussion
Deseret Power (Bonanza)	Source of CO2	5/13/2024	Office visit
Utah Division of Multicultural Affairs	Community input	6/12/2024	Office visit and discussion
Utah State Historic Preservation Office	Community input	6/12/2024	Office visit and discussion
Utah Association of Energy Users	Community input	6/18/2024	Discussion
Utah Department of Public Utilities	Community input	6/18/2024	Office visit and discussion
Utah Department of Workforce Services	Community input	6/18/2024	Office visit and discussion
Ute Tribe Employment Rights Office (UTERO)	Community input	7/18/2024	Office visit and discussion
Uintah County	Community-engaged project	7/18/2024	Office visit and discussion
Naples City	Community-engaged project	7/18/2024	Office visit and discussion
Vernal City	Community-engaged project	7/18/2024	Office visit and discussion
Ute Energy	Community input	7/18/2024	Office visit with a flyer 11



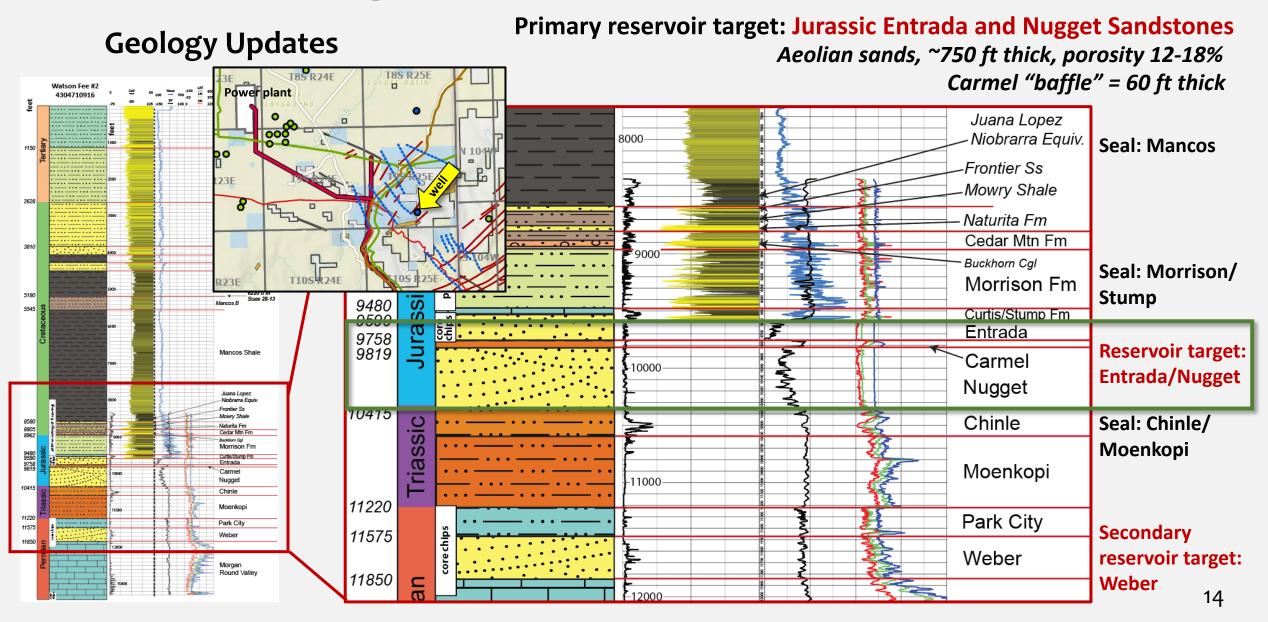
Well Log Data Collection

Sources (26 wells collected):

- Utah Division of Oil, Gas and Mining
- Utah Geological Survey
- Colorado Geological Survey
- Commercial databases

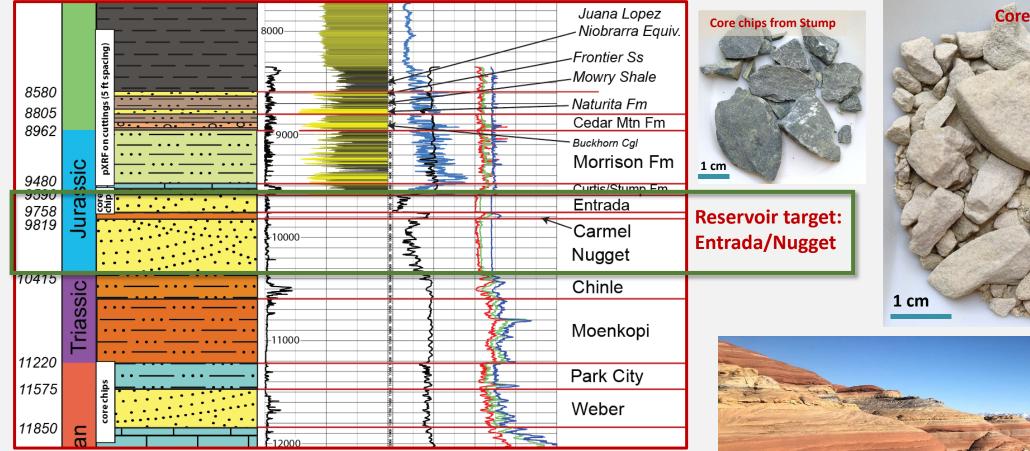


110


120 130

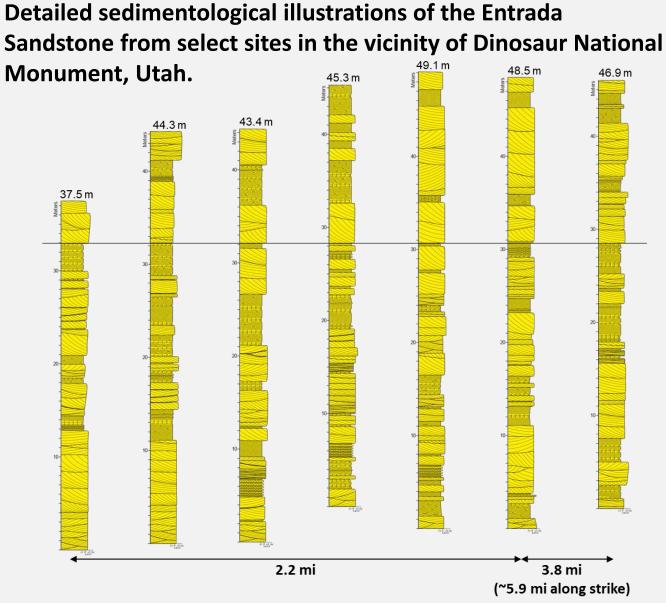
Tasks 3. Storage Complex Characterization

Well Log Data Assessment

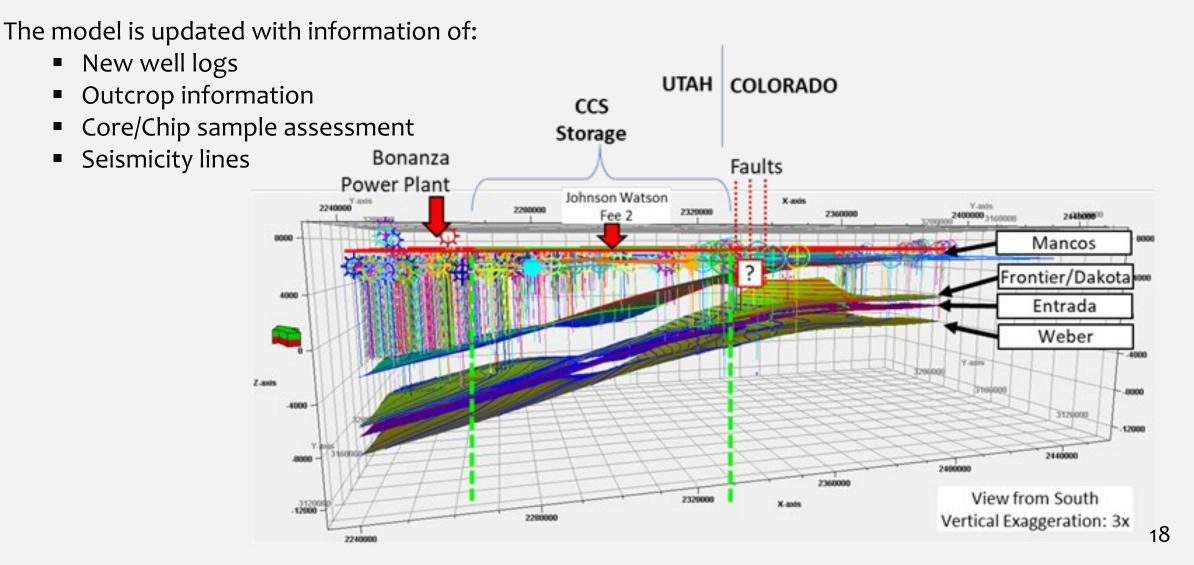

Consistent & Inconsistent GR Log Data

Uinta Basin

CarbonSAFE



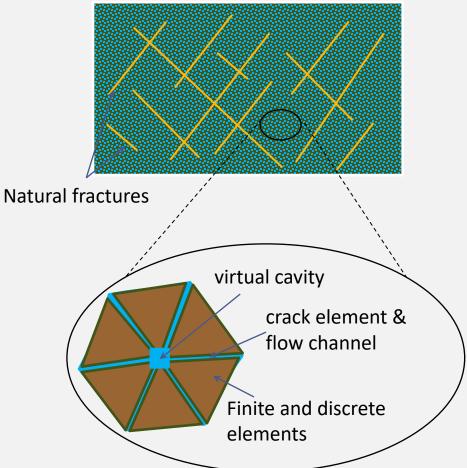
Examples of 3D models used to evaluate reservoir heterogeneity at different spatial scales.



0.3 mi of continuous outcrop displaying a complete vertical succession of the Entrada Sandstone. ¹⁷

Tasks 4. Geologic Modeling and Simulation

Geo Model Updates



Fluid Injection Induced Micro-Seismicity Simulations

- Formations with different fabrics and boundary conditions can cause different seismic behavior.
- Trends can be formulated when the involved physical processes are understood.
- Using alternative techniques to quantify fluid injection induced micro-seismicity.
- Key parameters:
 - Reservoir rock hydromechanical properties
 - In-situ stress
 - Injection characteristics

FDEM

Qualitative Risk Assessment: A Risk Questionnaire

Use features, events, and processes (FEPs) to identify potential risks.

-25 to -20: Non-operable		Categories/Groups:							
-16 to -10: Intolerable			Economic Environmental Characterizatic						
-9 to -5: Undesirable									
-4 to -2: Acceptable				Social O Simulation					
-1: Negligible			- wana	gement		o Operati	ion		
MITIGATION			Improbable	Unlikely	Possible	Likely	Probable		
Control Measure	ble 1	2	ω	4	л				
PREVENTION									
Light (L)	-1		-1 1L	-2 2L	-3 3L	-4 4L	-5 5L		
Serious (S)	-2	- SEV	-2 1S	-4 2S	-6 3S	-8 4S	-10 5S		
Major (M)	-3	SEVERITY	-3 1M	-6 2M	-9 3M	-12 4M	-15 5M		
Catastrophic (C)	-4		-4 1C	-8 2C	-12 3C	-16 4C	-20 5C		
Multi-Catastrophic (MC) -5	¥	-5 1MC	-10 2MC	-15 3MC	-20 4MC	-25 5MC		

Uinta Basin

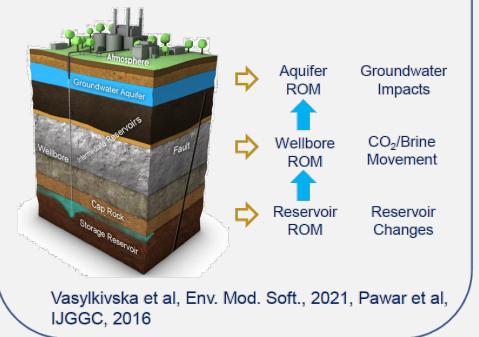
Qualitative Risk Assessment: A Risk Questionnaire

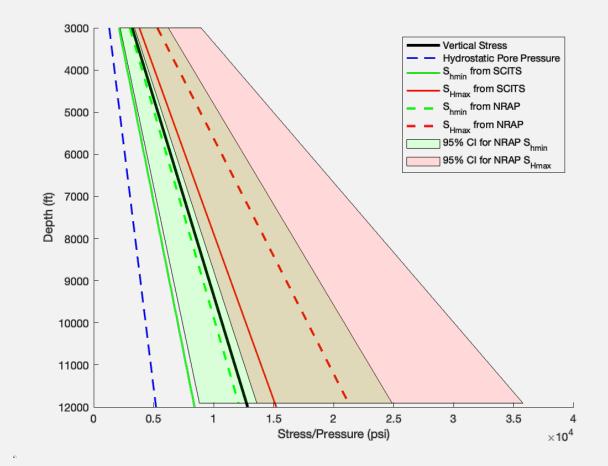
Use features, events, and processes (FEPs) to identify potential risks.

-25 to -20: Non-oper	Categories/Groups: • Economic • Technical									
-16 to -10: Intolerabl	Economic Environmental Characterization									
-9 to -5: Undesirable -4 to -2: Acceptable			• Legal/	Policy		• Monitoring				
			 Social Mana 	gement		SimulationOperation				
-1: Negligible			Wana	Sement		operat				
MITIGATION			Improbable	Unlikely	Possible	Likely	Probable			
Control Meas	sures		ole 1		ω	4				
PREVENTION	PREVENTION									
			-1	-2	-3	-4	-5			
Light (L)	-1		1L				5L			
Serious (S)	-2	- SEV	-2 1S	0	-6 3S		-10 5S			
Major (M)	-3	SEVERITY	-3 1M	21		-12 4M	-15 5M			
Catastrophic (C)	-4		-4 1C - O Ecor	2C	3C	-16 4C	-20 5C			
Multi-Catastrophic (ulti-Catastrophic (MC) -5				O Environmenta O Social O Management					

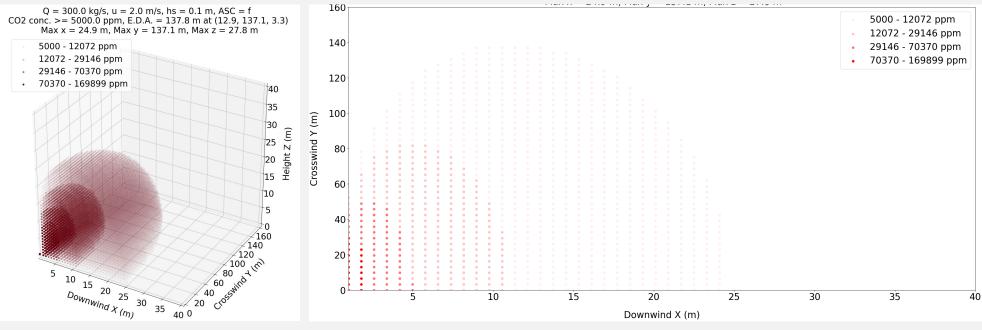
Ranking	Category	FEP
1	Economics	Financial support from investors and/or government
2	Legal/Policy	Legislation affecting CCUS
3	Economics	Capital cost
4	Economics	Carbon market
5	Legal/Policy	Policies affecting CCUS
6	Economics	CCUS commercialization
7	Economics	Financial viability
8	Characterization	Fractures and faults
9	Social	Low level of trust towards authorities
10	Legal/Policy	Permits (injecting)

Utah Legislations & Policies


Utah State House Bill (H.B.) 244 Geological Carbon Sequestration


- Provides a policy pathway for Utah Division of Oil, Gas & Mining (DOGM) to establish a permitting program for commercial geologic carbon sequestration projects in Utah
- Addresses liability, ownership and other critical legal issues
- □ H.B. 452 Carbon Capture Amendments
 - Provides additional clarification on addressing liability, including the establishment and funding for the Carbon Dioxide Storage Fund
- Utah Class VI Permitting Primacy
 - A draft Class VI rule & applying for Class VI regulatory primacy from the U.S. Environmental Protection Agency

Risks of Leakage and Seismicity


'NRAP open IAM' simulates behavior of a CO₂ storage site through an integrated assessment model combining reduced order models for multiple components including reservoir, leakage pathways and receptors (groundwater)

Risks of Transportation

- □ SimCCS is used to evaluate potential impact radius (PIR) by considering a CO2 release event.
- Extreme weather/climate changes, seismicity, impurity of CO2 sources, etc., are considered as key factors.

Example of PIR estimate using SimCCS

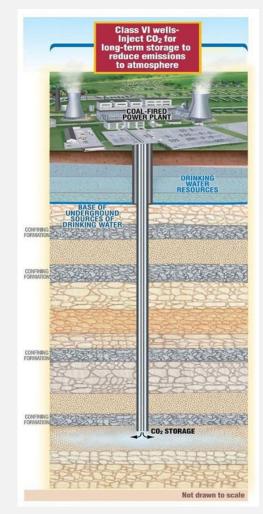
Tasks 6. Preliminary CO2 Management and Monitoring Plan

CO2 Source Assessment

CO2 Emission in 2023	CO2 Purity from Flue Gas	CO2 Recovery Rate *	Potential Captured CO2
3,865,499 short tons	12.7%	80-95%	3.09-3.67 million short tons

- Liquid amine sorbent is considered for CO₂ capture process.
- Pipeline will be the main option for CO2 transportation.
- **Gas separation and purification is required to transport CO_2 effectively.**
- □ HYSYS simulation will be used to estimate the gas composition after the capture process.
- Factors affecting the pipeline and compressor design, including gas composition, pressure conditions, and corrosion will be addressed.
- □ FECM/NETL CO₂ Transport Cost Model ^{**} will be used to optimize the designs.

^{*.} IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B.,O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA, 442 pp.

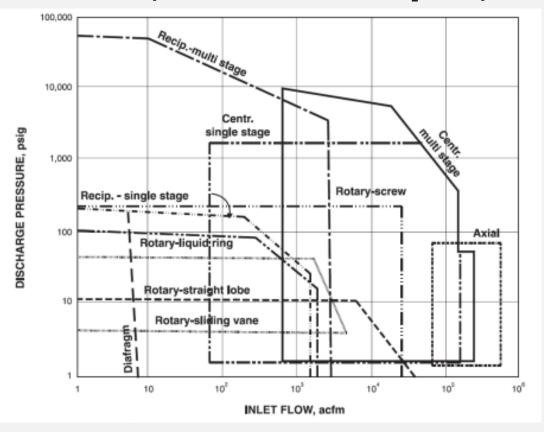

^{**.} Morgan, David, Guinan, Allison, & Sheriff, Alana. FECM/NETL CO2 Transport Cost Model (2022): Description and User's Manual. United States. https://doi.org/10.2172/1856355

Tasks 7. Plans for a Subsequent Complete Site Characterization Effort and UIC Class VI Permitting

The team is interpreting the UIC Class VI regulation (40 CFR 146.82 – 146.95) and preparing the following plans for detailed site characterization:

- Regional geology, and local structural geology,
- Maps and cross-sections of the AoR,
- Faults and fractures,
- Injection and confining zones,
- Geomechanics and petrophysics,
- Seismicity,
- Hydrology and hydrogeology,
- Geochemistry,
- Local climate, weather, air, soil and water information,
- Site suitability.

The project team will coordinate with operators to establish a framework for developing a UIC Class VI permit application for the study area.



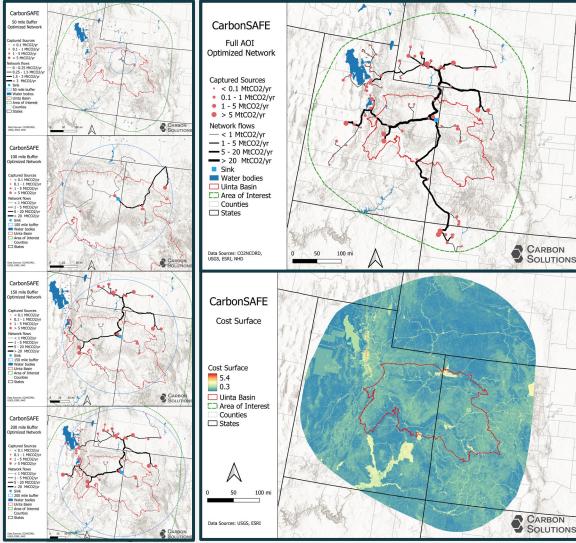
Tasks 8. Technical and Economic Feasibility Evaluation

Natural Gas --> CO2 Pipeline Retrofitting Considerations

- Retrofitting costs are driven by <u>compressor</u> <u>selection</u>, dependent on <u>mass flow rate</u>, <u>existing</u> <u>pipeline length/diameter</u>, and <u>discharge pressure</u>.
- The lower pressure rating of existing natural gas pipelines (ANSI Class 600 vs. 900) means <u>retrofitting</u> <u>is typically not practical</u> for large CO₂ flow rates (1BCSF/d, ~55k t CO₂/d) over distances >100 mi.
 - Feasible if diameters are large enough and throughput volumes are optimized.
 - A few examples of successful retrofits for lower flow rates and/or shorter distances (<100 miles).

Common Compressor Selections for CO, **Transport**

Trimeric Corporation, <u>CO₂</u> Compression Options for CCUS

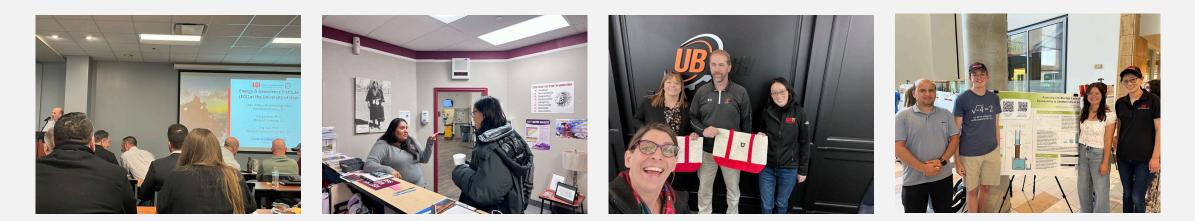


Tasks 8. Technical and Economic Feasibility Evaluation

Initial Exploratory Scenarios

- Possible scenarios for CO2 capture, transport, and storage by defining buffers of 50, 100, 150, and 200 miles around the Bonanza's sink.
- Maximum potential of capturing 80.6 MtCO2/yr. within the Area of Interest (AOI).

Sector	Streams	Facilities	Capturable CO2 (MtCO2 per <u>vr</u>)	Average Capture unit cost (\$/tCO2)
Power Plants - Coal	14		(HICO2 per yr) 57.81	45.77
Oil & Gas	51		8.01	56.39
Mining	13		4.33	
Power Plants - Gas	13	-	4.33	
Refineries	13		2.38	
Cement	2		2.30	
	_	-	0.68	
Lime & Gypsum	2			
Chemicals	1	-	0.40	21.90
Metals - Other	1		0.23	
Facilities	3	-	0.21	69.98
Natural Gas Processing	4	4	0.19	69.98
Hydrogen	1	1	0.15	71.13
Manufacturing	4	4	0.15	69.98
Power Plants - Other Fossil	1	1	0.15	64.45
Iron & Steel	3	2	0.13	61.30
Power Plants - Biomass	3	3	0.13	63.87
Chemicals - Other	2	2	0.11	69.98
Waste - Landfill	1	1	0.10	69.98
Pulp & Paper	1	1	0.04	69.98
Minerals - Other	1	1	0.03	43.92
Food & Ag	1	1	0.03	69.98
Power Plants - Other	1	1	0.02	64.45
Total	134	106	80.63	58.67


Project Timeline

Tasks		Ye	ar 1 (202	4)			Ye	ar 2 (2025)		
	Q1	Q	2 G	3	Q4	Q1	Q2	Q3	Q4]
1.0 Project Management & Planning										
Milestone – Kickoff Meeting & Annual Meetings		\diamond								/
1.1 Project Management										
1.2 Project Reporting	· · ·									
Milestone – PMP and DMP Updated	\diamond									
1.3 Data Submitted to EDX										
Milestone – Reports & EDX archives		\diamond		\diamond	(\rangle	\diamond	\diamond		
1.4 Advisory Board										
1.5 Coordination with other DOE Projects										,
2.0 Community Benefits Plan										
2.1 – Diversity, Equity, Inclusion, and Accessibility										
Milestone – Project Team DEIA Training					(>				
2.2 – Justice40 Initiative						v				
2.3 – Community and Labor Engagement										
2.4 – Investing in Job Quality and Skilled Workforce										
2.5 – Public Outreach and Engagement										
Milestone – Community Benefits Plan Updated		۵	۵	۵	(>	۵	۵	0	
3.0 Geological Characterization	_	V	V	V		/	v	v	v	
3.1 Evaluate Existing Data									_	
-										A dolay of the
3.2 Stratigraphic Well Drilling and Data					- (٥ —			-	A delay of the
Milestone – Stratigraphic Well Drilled					<u> </u>					
Milestone – Database of New Core and Log Data									•	stratigraphic we
4.0 Modeling & Simulations										
4.1 Geologic Model										alutilities at us have
4.2 Storage Complex Modeling										drilling plan
4.3 CO ₂ Storage Capacity Estimation										
4.4 Storage Scenarios and Optimization										
4.5 Area of Review										
Milestone – Area of Review Refinement										
5.0 Risk Assessment & Mitigation Plan										
5.1 Non-Technical Risks										
5.2 Leakage Risks with NRAP										
5.3 Induced Seismicity										
5.4 Transportation Risks						_				
5.5 Risk Mitigation Plans				_						
Milestone – Risk Registry and Identification						\$				
Milestone – Risk Mitigation Plan					,	v				
6.0 CO ₂ Management & Monitoring Plan		_				_		_		
6.1 CO ₂ Management Plan		_								
6.2 CO ₂ Monitoring Plan						_				
Milestone – Plans Completed										
7.0 Site Characterization and UIC Permitting Plan										·
-										
7.1 Subsequent Site Characterization Plan										
7.2 UIC Class VI Permitting Plan										
Milestone – Plans Completed										/
8.0 Technical & Economic Feasibility										
8.1 CO ₂ Source Viability										
8.2 CO ₂ Transportation Options										
8.3 Economic Feasibility										
Milestone – Final Scenario Analysis										

Project Plans

- Using the geology characterization data, the team will update the geologic model and conduct reservoir simulations to better estimate the storage potential, area of review (AoR), and risks.
- The team will work closely with our field operator to design and drill the stratigraphic well.
- The team will work with local stakeholders for developing a potential CCUS hub in the basin.

Ting.xiao@Utah.edu | egi.utah.edu