

UNDUNIVERSITY OF NORTH DAKOTA

Resource Assessment of Industrial Wastes for CO₂ Mineralization

FECM 24 (08/08/2024) Award No: FE0032244 Project Period of Performance: 07/01/2023 - 07/31/2025 PI: Johannes van der Watt (University of North Dakota) Project Manager: Johnathan Moore

PROJECT PARTICIPANTS

University of North Dakota

- College of Engineering and Mines Research Center
- Dept. of Civil Engineering
- Dept. of Geography

• Dept. of Chemical Engineering

Envergex, LLC (Sub-recipient)

Industry Supporters – Residue Providers

PROJECT OBJECTIVES

Identify & quantify usable resources for CO₂ capture

Map resource locations

- Develop CO₂ Mineralization (CO2M) processes
- Tap into existing infrastructure (CO₂ resources)
- Beneficiate residues to products (identify users)
- Quantify process viability environmental & economic benefits/disadvantages

ASSESSING CO2M VIABILITY, BENEFITS & DISADVANTAGES

Analogy: Integrating Spatial, Network & Suitability Analysis to find an idyllic town in Western U.S.

Suitability parameters and criteria

•	Climate	28%
•	Light Pollution	13%
•	Earthquakes	10%

- Mountains 16%
- Hospitals
 15%
- Roads 18%
- Adjustable weighting

Similarly – assess best U.S. CO2M opportunities

• Base on: resources, quantities, CO₂ capacity, sociodemographic factors, infrastructure, etc.

Example: Map of beautiful places in Western U.S.

PROJECT PERFORMANCE DATES

- Milestones & deliverables for each task
- Project update reports through quarterlies and final project report
- Current progress:
 - Task 3/4 in progress

	2023	2024	2025
Task	7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7
Task 1 - Project Management			
& Planning			
Task 2 - Characterization of			
Industrial			
Residues			
Task 3 - Ex-situ Direct			
Mineralization Testing			
Task 4 - Mineralized Product			
Characterization and			
Evaluation			
Task 5 - Mineralization			
Assessment Tool			
Development			

Task/Subtask No.	Deliverable Title
1.1	Project Management Plan
1.2	Community Benefits Plan
4	Mineralization Results Report & Data
5	Resource Assessment Tool & User Manual

FUNDING SUMMARY

- DOE & North Dakota Industrial Commission (NDIC) Project
- DOE Funding & NDIC Cost Share
- NDIC: "Assessment of Lignite-Based Industrial Residues for Value-Added Product Creation through CO₂ Mineralization"
- National- & State-wide focus

Project	DOE	NDIC
Objective	Assess viability of using industrial wastes for CO ₂ mineralization	Assess viability of beneficiating lignite-based residues using mineralization
Goal	Identify & quantify industrial residues applicable for CO ₂ capture	Identify & quantify as well as remove contaminants hindering residue use as construction replacement material
Duration	24-months	
Budget	\$ 1,000,000	\$ 250,000 (cost-share)

ADVANCING DOE PROGRAM GOALS

Enabling CO₂ Mineralization using Industrial Residues

- CO₂ Mineralization Potential
 - No single sufficient resource
 - Funding opportunity goal: 20 MMT CO₂ capture/y
 - Industrial residues \rightarrow Potential reactive minerals
 - Can reduce residues & liabilities
 - Enhancing material value

BACKGROUND

Heterogeneity Challenge

- Variability in properties, locations, & availability of residues
- Necessitates database & assessment tool/benchmark
- No two processes alike

Industry Needs

R&D tools

CO₂ mineralization strategies
 O When and where to use

TECHNICAL APPROACH

CO₂ Mineralization (CO2M)

- Carbonation advantage: Captured CO₂ does not require deep geologic disposal
- Nature's example: Weathering reactions
- But, kinetic & mass transfer limitations

 Processes impractical for ex-situ point-source capture

Supplementary

PROJECT STRUCTURE

Task 1.0 - Project Management and Planning

- Subtask 1.1 Project management plan (PMP)
- Subtask 1.2 Community benefits plan (CBP)

Task 2.0 - Characterization of Industrial Residues

• Subtask 2.1 - Residue Procurement

• Subtask 2.2 - Residue Characterization

Task 3.0 - Ex-situ Direct Mineralization Testing

PROJECT STRUCTURE

Task 4.0 - Mineralized Product Characterization and Evaluation

- Subtask 4.1 Product Characterization
- Subtask 4.2 Product Performance Testing

Task 5.0 - Mineralization Assessment Tool Development

- Subtask 5.1 Lifecycle Assessment for CO₂ Mineralization
- Subtask 5.2 Geographical Information System (GIS) Model
- Subtask 5.3 Develop Alternative-Processing Schemes
- Subtask 5.4 Develop Process Flow Diagrams
- Subtask 5.5 Technical and Economic Analysis

CURRENT PROJECT STATUS

TASK 2.0 – CHARACTERIZATION OF INDUSTRIAL RESIDUES

- Residue procurement and initial characterization complete
- 15 samples from 5 industries in the Midwest
- <u>Residues of focus also</u> <u>available beyond Midwest</u>

TASK 3.0 - EX-SITU DIRECT MINERALIZATION TESTING

50

CO2M Experiments

- Lab scale: Semi-batch testing
- Theoretical vs. actual carbonation
- Parametric study

Mineralization example

- Enhancement changes performance
- Other parameters: temperature, moisture, pressure, enhancers

Industrial residue CO2M optimization

TASK 3.0 - EX-SITU DIRECT MINERALIZATION TESTING

Residues Testing

Nine samples tested to date

- Each sample requires unique evaluation
- 4-5 MMT CO_2 /y capture possible in U.S.
- Using <u>five</u> industrial residues

- Currently produced and mostly landfilled
- Legacy landfilled material also available

Residue CO2M comparison

TASK 3.0 - EX-SITU DIRECT MINERALIZATION TESTING

16

Most important finding

- Modified CO2M shows improvement in coal combustion residue quality
 - CaSO₃ converted to CaSO₄
 - $SO_3 \rightarrow SO_4$ results in fly ash/gypsum mixture
 - With admixtures (e.g., ash, fine limestone) obtain materials for SCM application

Current process

- Up to 90% SO₃ conversion into SO₄
- Confirmed via wet chemistry/XRD methods

SO₃ conversion via modified CO2M process

TASK 4.0 - MINERALIZED PRODUCT CHARACTERIZATION AND EVALUATION

Baseline Strength Activity Index evaluation of select residues

- Establish baseline (shown)
 - · 20% cement substitution with as-received residues

Compressive strength testing

RISKS AND CHALLENGES

Challenges

Variety of residues

Differing resources, locations and industries
Even multiple residues at one source
Variations in residue handling and disposal

CO2M process

- Several parameters
- Require tailored approach
- Mitigation

 $_{\odot}$ Work closely with residue suppliers & end-users

Identify risks and challenges Determine impact and develop mitigation strategy Apply strategy

PROGRESS TOWARDS SMART MILESTONES

Goal 1: Increasing Representation in STEM

- Partnered with programs to support underrepresented groups in applying for research positions
- Provided training, mentorship, and education on CO2M technology

Goal 2: Equitable Site and Material Selection

- Identified materials and linking to Environmental Justice considerations
- Ultimately identify communities that can benefit most from CO2M

Goal 3: STEM Outreach

- Engaged in career fairs, public presentations, and local events
- Collaborated with the Citizens' Climate Lobby and TRIO Upward Bound Program
- Utilized NSF's Research Experience for Undergraduates (REU) to give students exposure to CO2M

COMMUNITY BENEFITS AND IMPACTS

Highlight – future collaboration

- UND's TRIO Programs & CEM Research Institute
 - Letter of support for UND TRIO Programs' 2025-2030 Student Support Services grant cycle
 - Work on student placement (hourly positions etc.)
 - Lab tours for high school learners

Highlight – Outreach

- Presentations to area students
 - Highlighting importance and excitement of STEM studies
 - Inform about addressing real-world challenges
 through engineering research

Student Outreach

NEXT STEPS

Continue CO2M testing with procured residues

Begin characterization for mineralized product

 Cement replacement performance evaluation

DOE ACKNOWLEDGEMENT & DISCLAIMER

This material is based upon work supported by the Department of Energy under Award Number FE0032244. This was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or presents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ACKNOWLEDGEMENT & DISCLAIMER: NORTH DAKOTA INDUSTRIAL COMMISSION (NDIC)

This presentation was prepared by the University of North Dakota pursuant to an agreement with the Industrial Commission of North Dakota, which partially funded the project through the Lignite Research Program. (Contract No. FY23-102-253)

- Thank you
- Questions?

 Contact details: Johannes van der Watt Office: (701) 777-5177 Email: johannes.vanderwatt@und.edu

