King City Asbestos Corporation (KCAC) Mine Carbon Mineralization Field Test

FWP-FEW0278

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 5 – 9, 2024 Briana Mordick Schmidt Lawrence Livermore National Laboratory

Challenge: Speeding up the natural process from geologic timescales to gigatons of CO₂ per year

B.E. Schmidt, K. Finstad, H.M. Goldstein, K.K., Mayfield, C.A. Myers, and M.M., Smith (LLNL); G.M. Dipple, A.M. Doucet, F. Jones, B. Ladd (UBC)

0

HH

carbonate

0

acidic water breaks

down silicate

minerals (e.g. olivine)

Mineral dissolution

000

vdrogen

carbonate

000

MAFIC

Basalt, Gabbro

INTERMEDIATE

Andesite, Diorite

FELSIC

Rhyolite, Granite

ULTRAMAFIC

Peridotite, Pyroxenite,

Example

000

carbon dioxide

forms carbonic

acid

CO₂ supply

- Carbon mineralization is a promising method to remove CO₂ directly from the atmosphere. Most work to date is at the bench or small field trial scale; larger-scale field trials are crucial to advancing the field.
- California has an ideal site for such field trials a serpentinite rock-hosted former asbestos mine in San Benito County, the King City Asbestos Corporation (KCAC) Joe Pit Mine.

80% short fiber, high surface area chrysotile (Mg,Fe)₃Si₂O₅(OH)₄

Why KCAC?

coalingite $Mg_{10}Fe^{3+}(OH)_{24}[CO_3] \cdot 2H_2O$ hydromagnesite $Mg_5(CO_3)4(OH)_2 \cdot 4H_2O$

brucite Mg(OH)₂ Avg 7-8 wt% Up to 10-25 wt%

Google

ery ©2023 Google, Imagery ©2023 AMBAG, Maxar Technologies, USDA/FPAC/GEO, Map data ©2023 🛛 🛽 🗤

OBJECTIVE: test multiple approaches to accelerate CO_2 mineralization of serpentinite rocks and asbestos tailings while providing a tightly controlled monitoring and safety environment.

Scope of Work

Phase 1: Site Characterization, Baseline Measurements, Design

 Collect samples from si perform geoche analysis.

 Characterize base conditions an variability at the temperature, wa CO₂ flux)

• Finalize design and costs of the test phase (Phase 2)

Complete Sept 2022

of carbon

zation methods at the

Phase 2: Field Testing and

Closeout

miciency, safety, and

Susing serpentinite to

e oversight of monitoring, procedures, data, and porting

eport and publish results

Remediate the site.

Starts Late August 2024

CO₂ flux: EC and DCC Data

Anne-Martine Doucet, Frances Jones, Melissa Cook, Bethany Ladd, Greg Dipple University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences,

Measuring CO₂ Flux

Soil Flux Chambers (DCC)

LI-8100A, LI-8150

Eddy Covariance (EC)

Long-term chamber

Survey chamber

Site Map and Monitoring Layout

Site Map and Monitoring Layout

CO₂ flux time series - LTC

CO₂ flux time series - EC

CO_2 flux comparison – EC + DCC

Key Point

 Both systems indicate that CO₂ is being absorbed by the waste material

Net uptake measured over the summer (April-August) :

- EC : 1.26 kg CO₂ m⁻² yr⁻¹
- DCC : 1.03 kg $CO_2 m^{-2} yr^{-1}$

- For comparison Mount Keith mine passively takes up 2.3 kg CO₂ m⁻² yr⁻¹ (Wilson, et al 2014) and Woodsreef 0.4 kg CO₂ m⁻² yr⁻¹ (max brucite 2%)
- Surface area (mine waste and benches): ~140 000 m^2
- Tons per year: 145 (DCC) 177 (EC) tons yr⁻¹

Sample Analysis: TGA and XRD

Anne-Martine Doucet, Frances Jones, Melissa Cook, Bethany Ladd, Greg Dipple University of British Columbia, Department of Earth, Ocean and Atmospheric Sciences,

Mineralogy - Sampling

Mineralogy - Methods

Pros: reliable mineralogical characterization and identification

Cons: low-abundance = high-relative error for minerals phases in serpentine-rich samples

Thermogravimetric Analysis (TGA)

Pros: high accuracy for mineral quantification **Cons**: isolation of similar minerals for quantification complex e.g. Hmg \rightarrow hydrotalcite \rightarrow brucite

Mineralogy – QXRD (bars) + TGA (stars)

- Serpentine group minerals + Magnetite + Quartz
- Calcite + Dolomite
- Brucite
- Hydrotalcite group minerals
- Hydromagnesite + Nesquihonite

Radiocarbon

Kari Finstad, LLNL

LLNL-PRES-868282
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Radiocarbon vs. depth

Comprising the training

¹⁴C vs. Rx Products (Mg Carbonates + Hydrotalcites)

Notification of Air Monitoring Results							
SUBJECT:	[KCAC Mines] [Personal Air] [Asbestos] [Ground-disturbance] (HCP 103678) [4-11-22 to 4-17-22]						
SAMPLING DATES:	4-11-22 to 4-17-22						
EXCEEDED LIMIT?	No						
CONCLUSION:	Worker exposure to Asbestos during ground-disturbing activities at a closed asbestos mine did not exceed						
	the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) of 0.1 fibers/cc.						
REQUIRED ACTIONS:	1. Continue to use controls stated in the above referenced work control document.						
	 Notify the IH or H&S Technician if the work changes (i.e., frequency, duration, materials, methods, controls, etc.). 						
	3. Share these results with all employees under your supervision who perform this type of work.						

Table 1: Air Monitoring Results (Batches 20222234, 20222275, 20222273, 20222242, 20222274, 20222272)									
Sample Date	Sample Number	Monitored Agent	Sample Duration ¹ (minutes)	Analytical Result ^{2,4} (f/cc)	8-hour TWA <i>2,3,4</i> (f/cc)	Exposure Limit ⁴ (f/cc)	Percentage of Exposure Limit		
4-11-22	3121 77 2	Asbestos	14	NA	NA	0.1	NA		
4-11-22	3121773	Asbestos	63	< 0.019	<0.0025	0.1	<2.5		
4-13-22	3121776	Asbestos	30	<0.036	<0.0023	0.1	<2.3		
4-13-22	3121 777	Asbestos	194	<0.0060	< 0.0024	0.1	<2.4		
4-13-22	3121778	Asbestos	193	0.010	0.0040	0.1	4.0		
4-13-22	3121779	Asbestos	193	< 0.0060	< 0.0024	0.1	<2.4		
4-14-22	3121 77 4	Asbestos	137	<0.0090	<0.0026	0.1	<2.6		
4-15-22	4647498	Asbestos	297	0.011	0.0068	0.1	6.8		
4-16-22	3121775	Asbestos	159	<0.0080	<0.0027	0.1	<2.7		
4-17-22	4647499	Asbestos	45	<0.025	<0.0023	0.1	<2.3		

Key Findings – Phase I

 Near-surface mine waste contains magnesium carbonates and hydrotalcites, indicating past carbon mineralization.

 Brucite is consistently present and abundant at depths below ~40cm, indicating significant unreacted material at relatively shallow depths.

Background CO₂ uptake of ~1kg CO₂/m²/yr indicates presence of reactive material

 Based on results to date, two methods selected to accelerate the rate of CO₂ mineralization: Tilling Method and the Greenhouse Method.

• We hypothesize these methods can increase the natural background rate of CO₂ mineralization rate by 5 times.

 Monitoring of personnel indicated asbestos exposure is well below regulated limits for all activities to date

Phase II Experimental Design: Tilling Method (CarbMinLab)

Phase II Experimental Design: Tilling Method (CarbMinLab)

Phase II Experimental Design: Greenhouse Method (Corey Myers, LLNL)

LAWRENCE Livermore National Laboratory

Partners

B.E. Schmidt, K. Finstad, H.M. Goldstein, K.K., Mayfield, C.A. Myers, and M.M., Smith (LLNL); G.M. Dipple, A.M. Doucet, F. Jones, B. Ladd (UBC)

Lawrence Livermore National Laboratory

Thank you!

schmidt45@llnl.gov

https://www.netl.doe.gov/project-information?p=FWP-FEW0278