[DE-FE0032259] Resource Assessment for Carbon Dioxide Storage via **Accelerated Carbonation Reaction with Recycled Concrete Aggregates (RCA)**

> **2024 FECM/NETL Carbon Management Research Project Review Meeting** Speaker: Seunghee Kim, Ph.D., P.E., University of Nebraska-Lincoln

August 8, 2024

IN OUR GRIT, OUR GLORY

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

Next Steps

Table of Contents

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

Next Steps

Table of Contents

Key Project Participants

- PI: Seunghee Kim, Associate Professor, Department of Civil and Environmental Engineering, University of Nebraska-Lincoln (UNL)
- Co-PI: Jiong Hu, Professor, Department of Civil and Environmental Engineering, UNL
- Co-PI: Eric Thompson, Professor, Economics; Director of the Bureau of Business Research, UNL
- Co-PI: Christopher Exstrom, Professor, Chemistry, University of Nebraska at Kearney (UNK)
- Consultant: Chris Hawkins, President/CEO of Hawkins Construction Company

The organizational chart for project assignments

Project Objectives & Tasks

The Overall Objective

The overall objective is to identify the optimum processes to maximize CO₂ sequestration, enhance the efficiency of carbon mineralization, improve the technology readiness of carbon mineralization, and build and advance the required <u>industrial waste resource base</u>, in particular <u>waste concrete</u> base.

The Scope of Work

Task 1: Project management and planning

Task 2: Field sampling

Task 3: Laboratory analysis of carbonation reactions

Task 4: Resource assessment

Project Performance Dates: July 1, 2023 – June 30, 2025

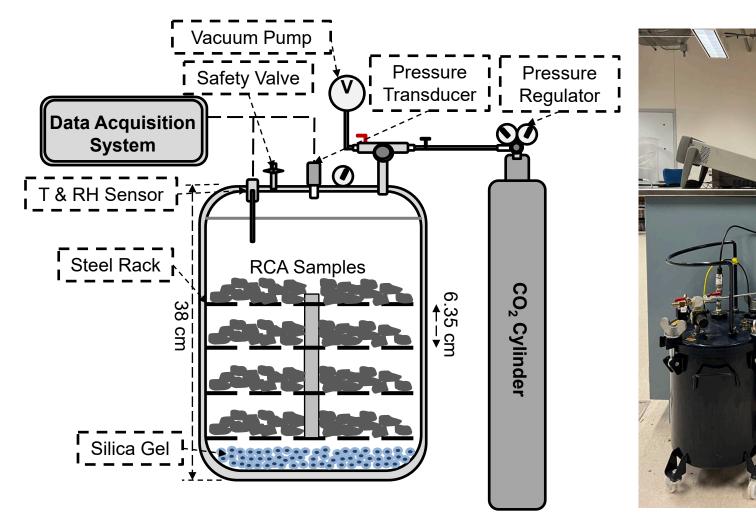
Table.	Milestones of the proposed project.			
Task/ Subtask	Milestone Title & Description	Planned Completion Date	Actual Completion Date	Verification Method
1/1.1	Updated project management plan	9/30/2023	9/30/2023	Project management plan file
1/1.1	Kickoff meeting	9/30/2023	9/30/2023	Presentation file
2/2.1- 2.2	 List of collected RCA samples and characterization results 	3/31/2024	4/30/2024	Summary report
3/3.1- 3.2	 Small-scale carbonation reaction tests and the physical and mechanical test results 	9/30/2024		Milestone report and presentation file
3/3.3- 3.5	3. Large-scale carbonation reaction tests, the prediction of reaction rates and carbon uptake rates, and protocols for optimum CO ₂ storage in RCA	3/31/2025		Milestone report and evaluation of derived carbonation and CO ₂ uptake rates
4/4.1- 4.3	4. RCA resource base, CO ₂ storage capacity, and cost and market analysis results	6/30/2025		Final report and presentation file

Project Performance Dates

Table: Spend plan by fiscal year.

	FY 2023		FY 2	024	FY 2025		Total	
	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share
UNL	64,192	22,432	348,030	88,956	293,130	64,976	705,352	176,364
UNK	13,356	3,119	51,659	12,474	34,771	9,356	99,786	24,949
Total (\$)	77,548	25,551	399,689	101,430	327,901	74,332	805,138	201,313
Total Cost Share (%)		24.78%		20.24%		18.48%		20%

Funding Summary


Project Overview

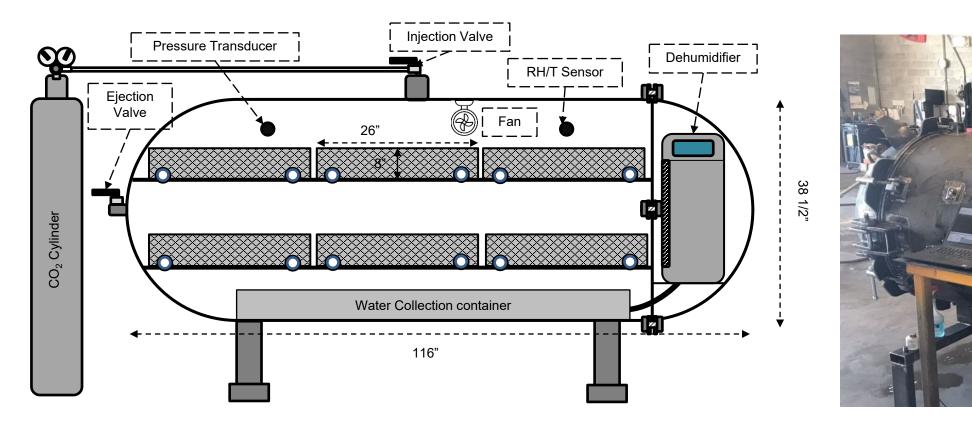
Project Background

Technical Approach/ Project Scope **Current Status of Project and Accomplishments** Summary of Community Benefits and Impacts Next Steps

Table of Contents

Previous Research: Accelerated Carbonation of RCA in the Small-Scale Reaction Chamber

Assumption on the main reactions:

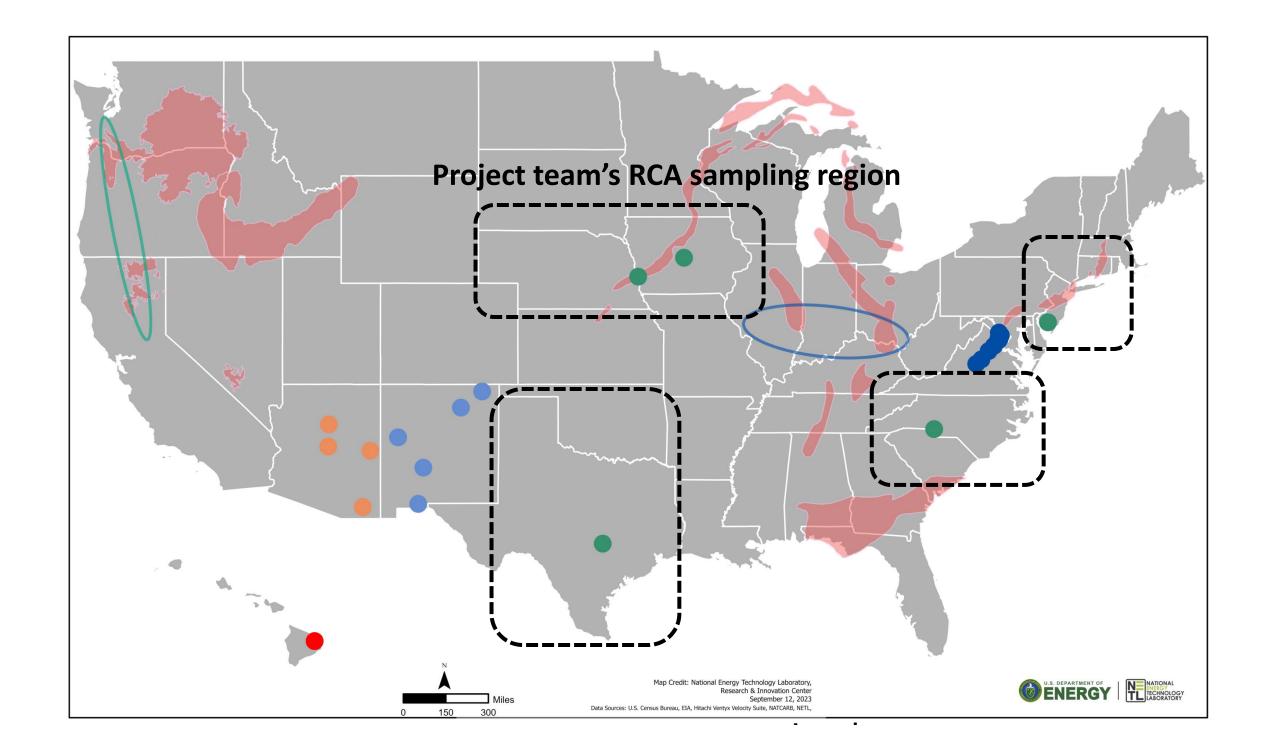

 $Ca(OH)_{2} + CO_{2} \rightarrow CaCO_{3} + H_{2}O$ $C-S-H + CO_{2} \rightarrow CaCO_{3} + SiO_{2} + nH_{2}O$

Possible main variables on the reaction kinetics: (1) Pressure, (2) Temperature, (3) Time, (4) Relative humidity

Project History

Previous Research: Accelerated Carbonation of RCA in the Large-Scale Reaction Chamber

Carbonation variables:


- (1) Pressure: 1 60 psi (7 414 kPa)
- (2) Temperature: ambient, cold, and hot temperature
- (3) Reaction time: 1 24 hours
- (4) Relative humidity: 5 80%
- (5) Scale (or volumetric CO₂ ratio)

Project History

Project Locations

Importance of Project towards advancing DOE Program Goals

Scientific and Technological Merit

- AOI-4 Carbon Storage Technology. Emphasis on classifying RCA with key indices, lab measurements of carbonation reaction, CO₂ uptake rates at different scales, and mechanical & chemical characterization of carbonated RCA.
- The research will provide valuable results for <u>RCA resource base</u> and <u>CO₂ storage potential</u>.
- Potential to achieve a minimum of 20 million tons of permanent CO₂ storage per year.

Novelty of the Project

- In-house, fabricated, lab- and large-scale reaction chambers (one-ton capacity).
- Specially designed physical, mechanical, and chemical test sets: deliver quality control (QC) measures and products for the construction industry and green market.
- Collaboration between academia and industry.

Project Overview

Project Background

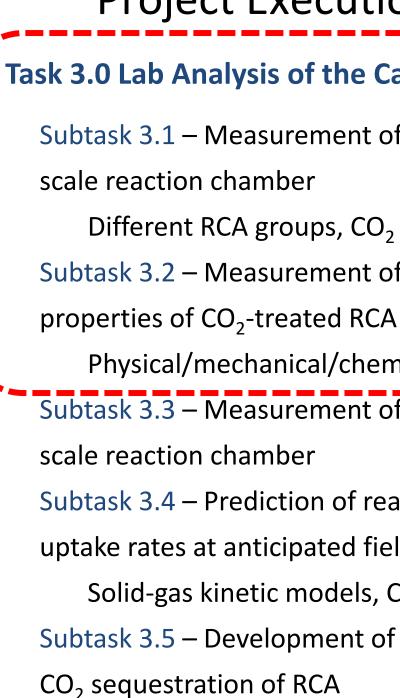
Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

Next Steps

Table of Contents


Task 1.0 Project Management and Planning

Subtask 1.1 – Project management plan Subtask 1.2 – Diversity, Equity, and Inclusion

Task 2.0 Field Sampling

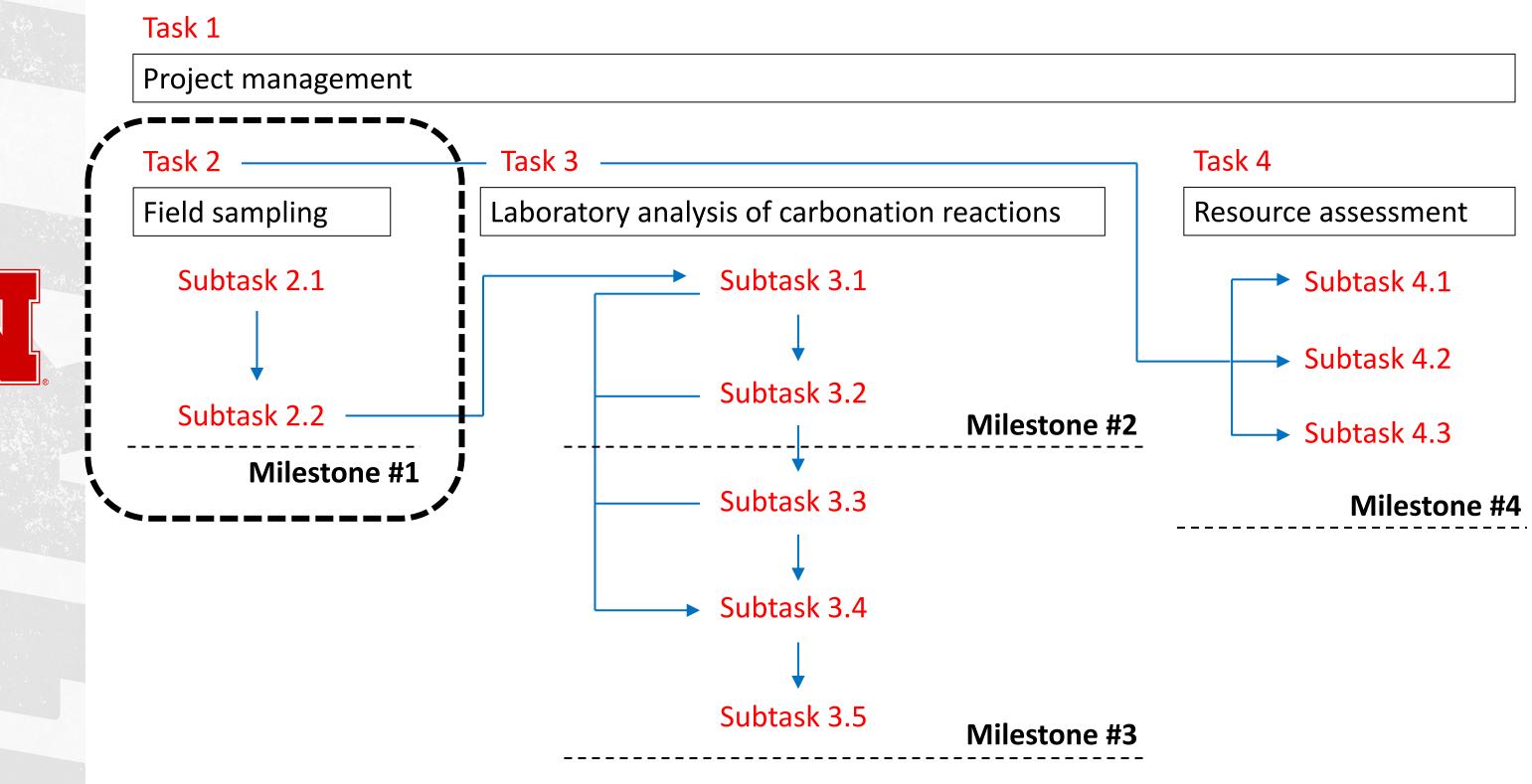
Task 4.0 Resource Assessment

Subtask 2.1 – Acquisition of RCA From different locations with temp-humidity Source code for concrete mixture Origin of infrastructure, size, and gradation Subtask 2.2 – Characterization of RCA Physical/mechanical properties of RCA Residual mortar content (RMC) Chemical composition (XRD, TGA, etc.) \rightarrow several groups of RCA

Subtask 4.1 – Resource assessment of RCA: expected resources of each RCA groups

Subtask 4.2 – CO₂ storage potential

Project Execution Plan


Task 3.0 Lab Analysis of the Carbonation Reactions

- Subtask 3.1 Measurement of reaction kinetics at small-

 - Different RCA groups, CO₂ pressure, temperature
- Subtask 3.2 Measurement of physical and mechanical

 - Physical/mechanical/chemical tests
- Subtask 3.3 Measurement of reaction kinetics at large-
- Subtask 3.4 Prediction of reaction rates and carbon
- uptake rates at anticipated field conditions
 - Solid-gas kinetic models, CO₂ mass consumption
- Subtask 3.5 Development of Protocols for Optimum
- Subtask 4.3 Cost and market analysis: Industrial wastes and mineralization process

Project Schedule & Key Milestones

Expected Outcomes and Impacts

Expected Outcomes and Impacts

- Improve the <u>quality of the RCA resource base</u> and <u>carbon sequestration capacity</u> via the ulletcarbonation of RCA in the *ex-situ* mineralization setting.
- First set of quantitative test data on carbonation reaction rates and carbon uptake rates with different RCA groups.
- Potential to disrupt the <u>\$19 billion stone aggregate industry</u> in an environmentally positive manner.
- Reduced burden on the construction and demolition waste <u>management</u>.
- Target cost: \$15-18 per ton for Carbonated RCA vs. \$22-28 per ton for natural limestone aggregates.

Task/ Subtask	Decision Point Description	Date	Su
1	Decision regarding revision of Project Management Plan	9/30/2023	New Project Management Plar
2.1-2.2	Field sampling – acquisition and characterization of RCA	6/30/2024	Source materials are classified composition, and other relevant
3.1-3.3	Determination of carbonated RCA properties	3/31/2025	Improvements in the physical, characteristics of source mater demonstrated.
3.4-3.5	Derivation of carbonation reaction rate and CO ₂ uptake rate	3/31/2025	Carbonation reaction rates at a Potential carbon uptake rates a estimated.
4.1	Resource assessment of RCA	6/30/2025	The location, quantity, availabi each classified quality group ar
4.2	CO ₂ storage potential	6/30/2025	CO ₂ storage potential (MtCO ₂ storage potential (MtCO ₂ storage) resource groups is assessed.
4.3	Cost and market analysis	6/30/2025	The cost analysis of carbonatio and market analysis are compl

Project Success Criteria

Success Criteria

in submitted if necessary.

d with residual mortar content, chemical ant physical/ mechanical indices.

, mechanical, and environmental erials after the carbonation reaction are

anticipated in-situ conditions are derived. at the presumed mass-scale operation are

pility, and accessibility of RCA resources by are identified.

stored or sequestered) of identified RCA

on operation, as well as supply, demand, leted.

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

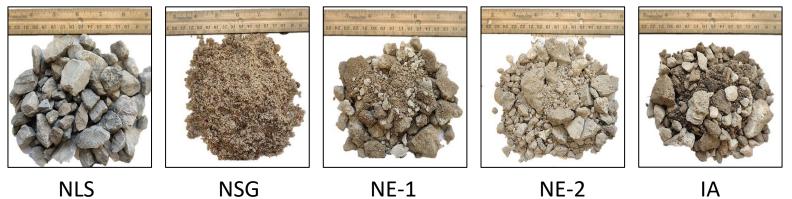

Next Steps

Table of Contents

Subtask 2.1: Acquisition of representative RCA samples

Sources and information of collected RCA samples

Aggregate ID	Location	Agg
NLS	Omaha, Nebraska	
NSG	Omaha, Nebraska	Sai
NE-1	Omaha, Nebraska	
NE-2	Valley, Nebraska	Comr
IA	Ankeny, Iowa	Μι
NY	Hillburn, New York	Comr
NC	Charlotte, North Carolina	Comr

NLS

NSG

gregate Source

Limestone

ind and Gravel

Highway

mercial buildings

ultiple sources

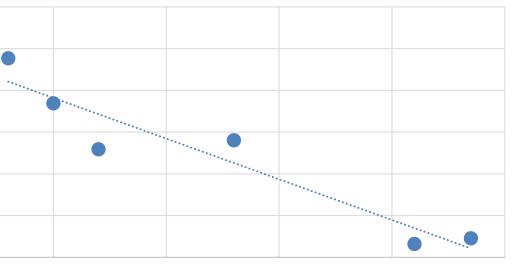
mercial buildings

mercial buildings

IA

Subtask 2.2: Characterization of RCA

Test methods for basic properties of RCA

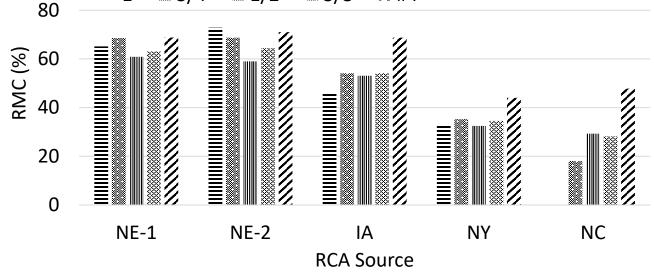

Tests	Standard	Before Carbonation	After Carbonation	
Gradation	ASTM C136	CA and FA combined	N/A	
Specific Gravity	ASTM C127/ C128	CA and FA	CA	
Water Absorption	ASTM C127/ C128	CA and FA	CA	
Residual Mortar Content (RMC)	- Mamirov et al. (2022)	CA (all sizes)	N/A	
Freeze/Thaw (F/T) Mass Loss	- CSA 23.2-24A	CA (½")	CA (½")	
Aggregate Compression Test (ACT)	_	CA (All sizes)	CA (½")	
Aggregate Crushing Value (ACV)	- Mamirov et al. (2022)	CA (All sizes)	CA (½")	
TGA, XRD	Scrivener at al. (2016)	CA	CA	
Paste Content	Zhao et al. (2022)	CA	N/A	

Note: CA: coarse aggregates, FA: fine aggregates

Subtask 2.2: Characterization of RCA

Specific gravity and water absorption

Aggregates	Specific Gravity	Water Absorption (%)		
NSG	2.62	0.64		
NLS	2.67 0.91			
NE-1	2.34 (2.38/ 2.30) * 5.18 (4.86/ 5.55)			
NE-2	2.30 (2.34/ 2.27) * 7.38 (7.09/ 7.69)			
IA	2.26 (2.32/ 2.18) *	9.54 (9.20/ 9.99) *		
NY	2.46	5.61		
NC	2.60	3.61 S		
Note: *Coarse agg	regates/Fine aggregates	rptic		
		Mater Absorption (%)		
		ter /		
		Ka		

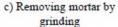

2.3 2.5 2.6 2.4 2.7 Specific Gravity

Subtask 2.2: Characterization of RCA

Residual mortar content (RMC)

Aggregates			RMC (%)			
Aggregates	1″	3⁄4"	1⁄2"	3/8″		#4
NE-1	65.14	68.60	60.88	63.07		68.80
NE-2	72.85	68.73	59.00	64.40		71.00
IA	45.99	54.11	53.10	54.12		68.74
NY	33.08	35.24	32.47	34.56		44.02
NC	-	18.10	29.31	28.19	100	≡1"
Mathadu tharma	al chack mathed (Mamirovatal			80	

Method: thermal shock method (Mamirov et al., 2022)



a) Heating process

b) Submerging in water

d) Sieving process

e) Original NA in RCA

f) Removed residual mortar

≥ 3/4" ■ 1/2" ≥ 3/8" ≈ #4

Subtask 2.2: Characterization of RCA

Aggregate crushing value (ACV)

Aggregates			ACV %		
Aggregates	1"	³ /4″	1⁄2"	3/8"	#4
NLS	-	-	-	7.67	-
NE-1	18.53	15.71	19.06	19.15	23.02
NE-2	18.01	19.34	19.43	19.97	23.10
IA	18.75	18.19	19.37	19.65	23.22
NY	13.06	11.12	10.11	12.88	17.46
NC	-	8.93	8.46	9.96	1 35

30

ACV (%) 20

25

15 10

5

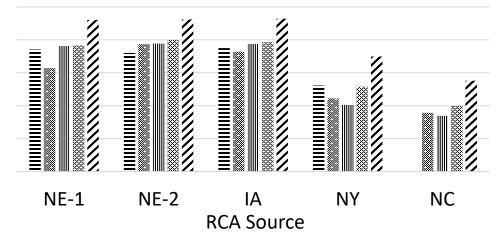
0

a) Placing sample in a steel ring

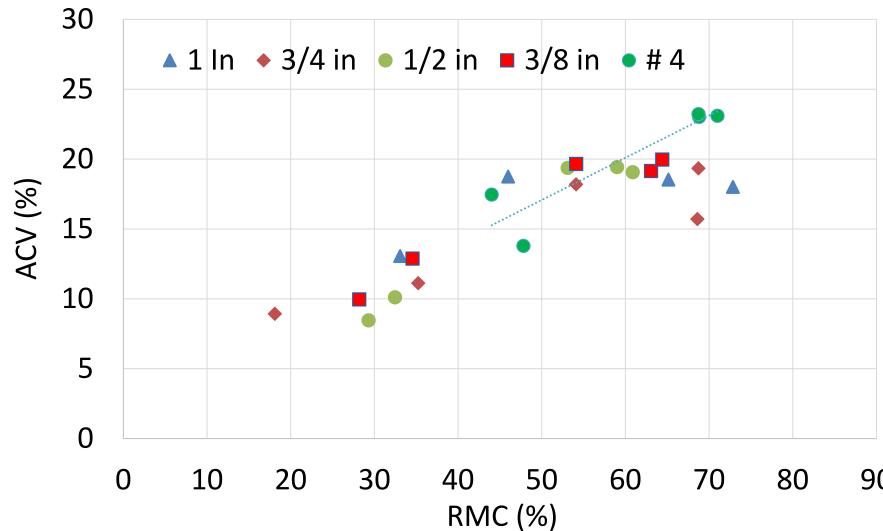
d) Vibrating a sample

b) Applying load

e) Sieving a sample

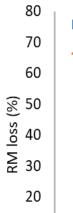


c) Sample appearance after crushing process

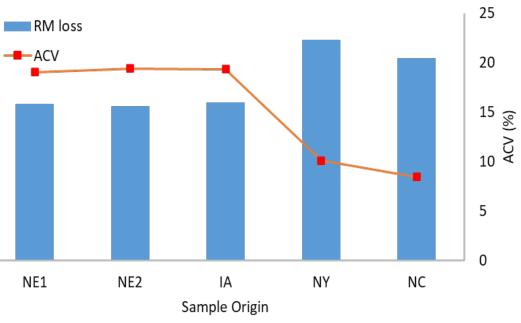

f) Crushed amount

- ₩ 3/8" 3/4" ≣1" **⁄** #4

Subtask 2.2: Characterization of RCA

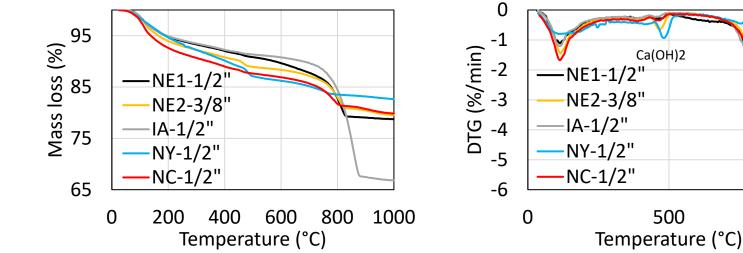

Correlation between RMC and ACV

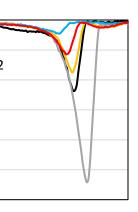
Subtask 2.2: Characterization of RCA


Freeze/Thaw (F/T) mass loss

Aggregates (with 1/2" size)	ACV (%)	RMC (%)	F/T mass loss (%)
NLS	7.67	-	4.88
NE-1	19.06	60.88	30.84
NE-2	19.43	59.00	29.52
IA	19.37	53.10	27.13
NY	10.11	32.47	23.17
NC	8.46	29.31	19.23

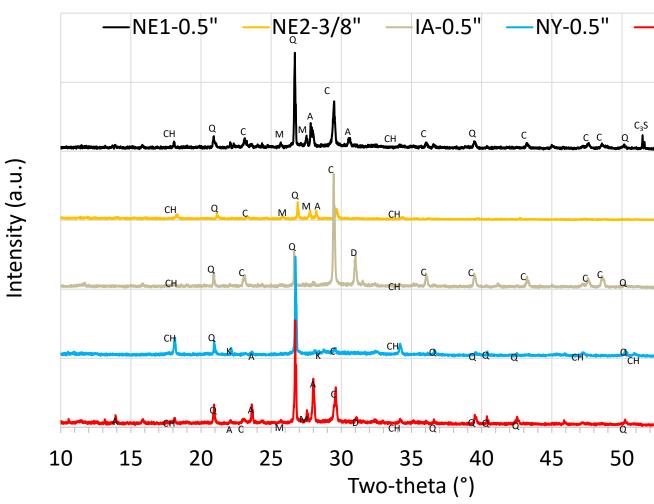
10

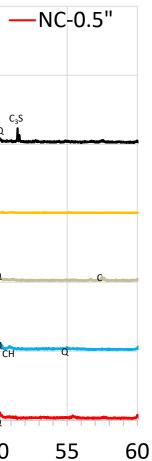




Subtask 2.2: Characterization of RCA

<u>Composition analysis – Thermal gravimetric analysis (TGA)</u>

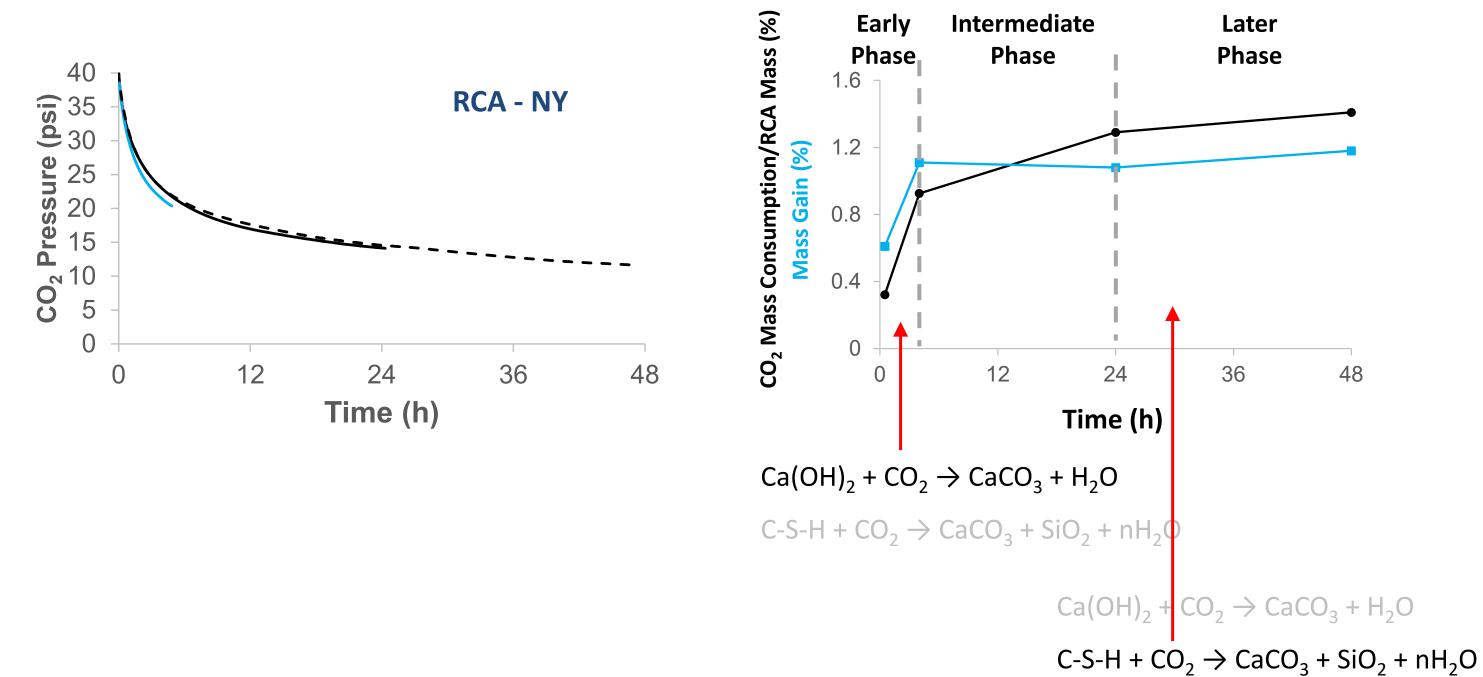

ID	RMC (%)	Final Mass (%)	Ca(OH) ₂ in mortar (%)	Ca(OH) ₂ in concrete (%)	CaCO ₃ in mortar (%)	CaCO ₃ in concrete (%)
NE1-1/2"	60.88	78.7	6.8	4.1	26.4	16.1
NE2-3/8"	64.4	79.5	9.5	6.1	18.5	11.9
IA-1/2"	53.1	66.8	5.4	2.9	54.3	28.9
NY-1/2"	32.47	82.6	15.1	4.9	7.5	2.4
NC-1/2"	29.31	79.8	8.0	2.3	14.4	4.2



Subtask 2.2: Characterization of RCA

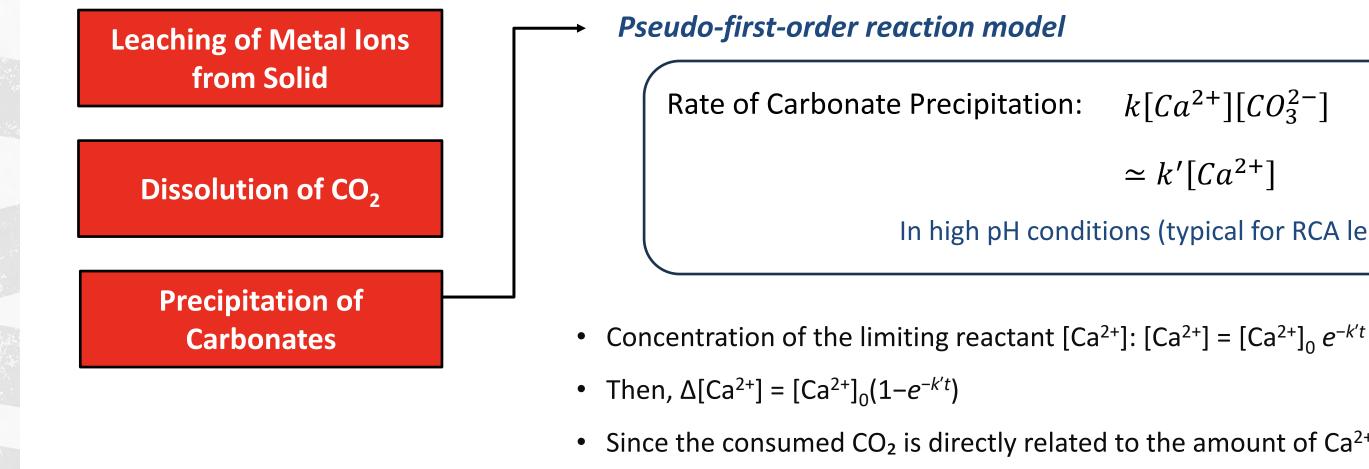
<u>Composition analysis – X-ray diffraction (XRD)</u>

XRD results of the acquired RCA samples from different sources. Note: Q = quartz, C = calcite, A = albite, CH = portlandite, M = microcline, D = dolomite, and K = kanemite



Subtask 2.2: Characterization of RCA

So far, important factors for the carbonation reaction


Source	RMC (%)	Paste Content in Concrete (%)	Water Absorption (%)	Ca(OH) ₂ in Concrete (%)	Normalized CO ₂ Sequestration Capacity (%)	ACV (%)	F/T (%)
NE-1 ½"	60.8	19.21	5.18	4.1	1.48	19.06	30.84
IA ½"	53.1	17.89	9.54	2.9	1.32	19.37	27.13
NY ½"	32.4	18.48	5.61	4.9	1.26	10.11	23.17
NC ½"	29.3	12.86	3.61	2.3	0.78	8.46	19.23
NE-2 3/8"	64.4	29.25	7.38	6.1	2.51	19.97	29.52

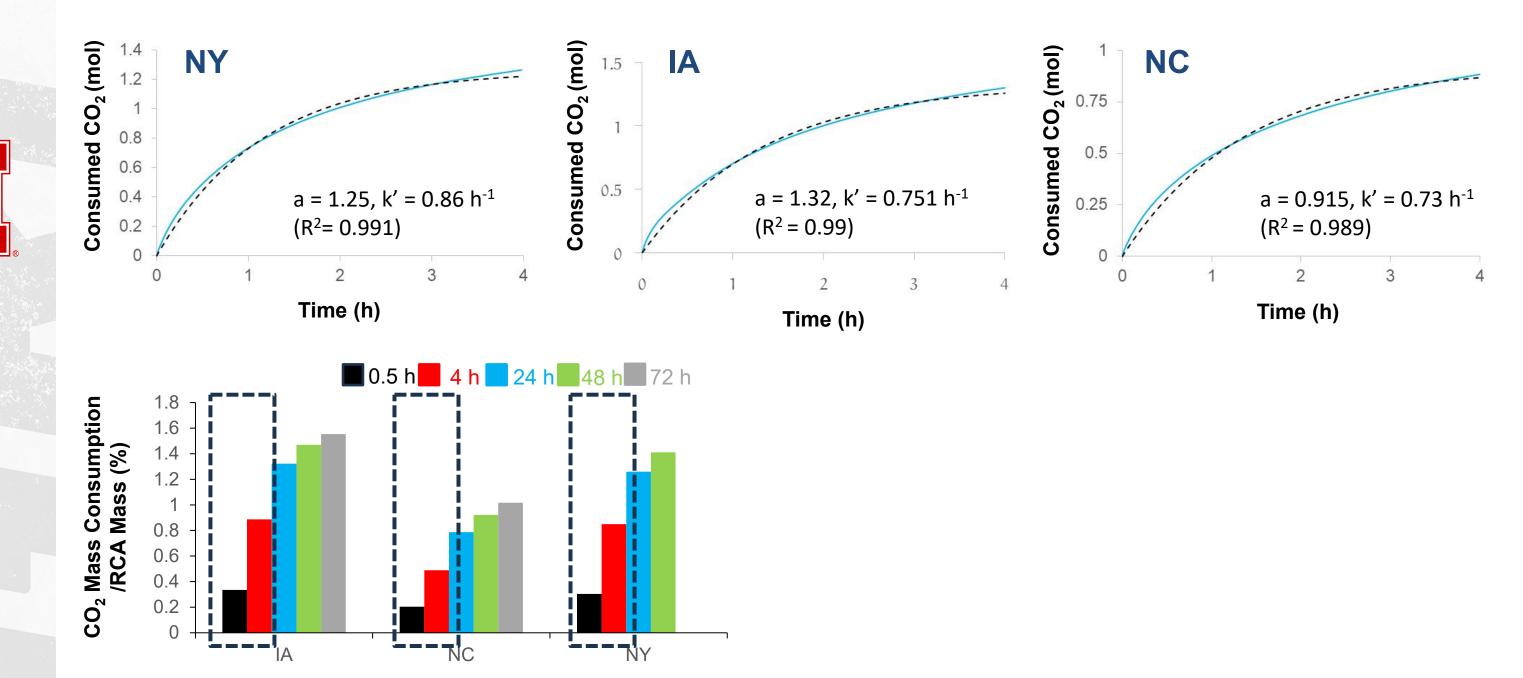
Subtask 3.1: Measurement of reaction kinetics at small-scale reaction chamber

Subtask 3.1: Measurement of reaction kinetics at small-scale reaction chamber

<u>Three stages of carbonation reaction</u>

• Since the consumed CO₂ is directly related to the amount of Ca²⁺ reacted, the total amount of CO₂ consumption (in moles) can be modeled as:

where, $a = \text{maximum amount of } CO_2$ that can be consumed,


k' = rate constant for the reaction.

 $k[Ca^{2+}][CO_3^{2-}]$ $\simeq k' [Ca^{2+}]$ In high pH conditions (typical for RCA leachate)

$$CO_2(mol) = a \left(1 - e^{-k't} \right)$$

Subtask 3.1: Measurement of reaction kinetics at small-scale reaction chamber

Pseudo first order reaction: Early phase

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

Next Steps

Table of Contents

Community Benefits Plan

- Action 1: Recruit, develop, and graduate a talented and diverse pool of students.
 - 3 undergraduate students at UNL and 2 undergraduate students at UNK were hired from either the Hispanic, African American, or Female student groups.
- Action 2: Perform outreach to students in minority or underrepresented groups outside of UNL/UNK.
 - 1 high school teacher from outside of UNL/UNK was invited to participate in the research activities during the summer of 2024.
 - In addition, the project team participated in 2 outreach events that invited local high school students and engaged them in the hands-on activities.
- Action 3: Provide meaningful training and learning experiences to all team members to improve their understanding of diversity, equity, and inclusion concepts and enable them to apply these ideas to model behaviors.
 - PI, co-PIs, and graduate students attended 3 workshop events that are relevant to diversity, equity, and inclusion.

Project Overview

Project Background

Technical Approach/ Project Scope

Current Status of Project and Accomplishments

Summary of Community Benefits and Impacts

Next Steps

Table of Contents

Task 1.0 Project Management and Planning

Subtask 1.1 – Project management plan Subtask 1.2 – Diversity, Equity, and Inclusion

Task 2.0 Field Sampling

Task 4.0 Resource Assessment

Subtask 2.1 – Acquisition of RCA From different locations with temp-humidity Source code for concrete mixture Origin of infrastructure, size, and gradation Subtask 2.2 – Characterization of RCA Physical/mechanical properties of RCA Residual mortar content (RMC) Chemical composition (XRD, TGA, etc.) \rightarrow several groups of RCA

scale reaction chamber properties of CO₂-treated RCA scale reaction chamber

Subtask 4.1 – Resource assessment of RCA: expected resources of each RCA groups

Subtask 4.2 – CO₂ storage potential

Subtask 4.3 – Cost and market analysis: Industrial wastes and mineralization process

Next Steps

Task 3.0 Lab Analysis of the Carbonation Reactions

- Subtask 3.1 Measurement of reaction kinetics at small-
 - Different RCA groups, CO₂ pressure, temperature
- Subtask 3.2 Measurement of physical and mechanical

 - Physical/mechanical/chemical tests
- Subtask 3.3 Measurement of reaction kinetics at large-
- Subtask 3.4 Prediction of reaction rates and carbon
- uptake rates at anticipated field conditions
 - Solid-gas kinetic models, CO₂ mass consumption
- Subtask 3.5 Development of Protocols for Optimum CO₂ sequestration of RCA

Acknowledgment - Funding Supports

NEBRASKA

Good Life. Great Opportunity.

DEPT. OF ECONOMIC DEVELOPMENT

Thank you! Questions?