CarbonSAFE Phase II: CTV III CO₂ Storage Project

Demonstrate safe, reliable CO₂ transport and storage in California's Sacramento Delta

Travis Hurst Director Carbon Storage Exploration Carbon TerraVault

Funding for this project will be provided by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL).

Project Overview

CarbonSafe Phase II: CTV III CO₂ Storage Project

Timeline: Two-year timeframe – Selected - in Negotiations

Funding: Federal \$8.9 MM / Cost-share \$2.2 MM

Objective: Investigate the feasibility of developing a commercial-scale carbon storage hub in the Sacramento Delta, California. CO_2 captured from greenfield and existing sources in the East-Bay.

Project Team:

Lead - Colorado School of Mines

California Resources / Carbon TerraVault

Blade Energy Partners

Providence Strategic Consulting

Organizations	Personnel	Position			
Colorado School of Mines	Dr. Yanrui Daisy Ning	Research Associate of Geophysics			
	Dr. Ali Tura	Professor of Geophysics			
California Resources Corporation /	Joe Ashley	CRC/CTV Team Leader of Community Benefits			
Carbon TerraVault	Travis Hurst	CRC/CTV Team Leader of Technical			
Providence Strategic Consulting	Tracy Leach	Government and Public Relations Strategist			
Blade Energy Partners	Suri Suryanarayana	Drilling Engineer			

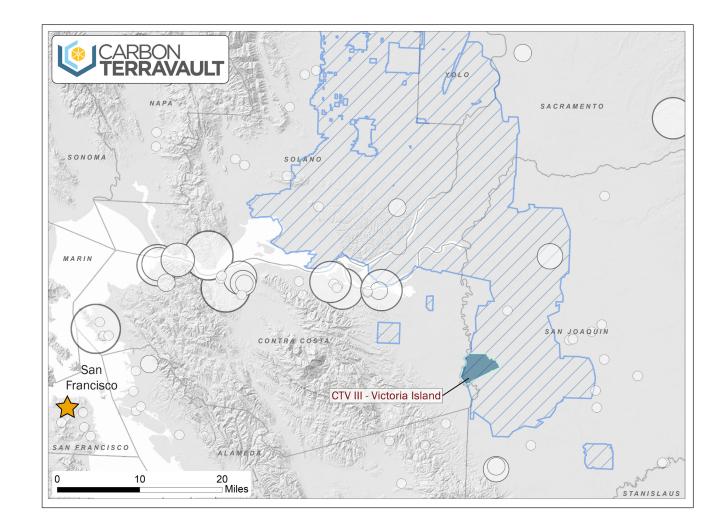
3

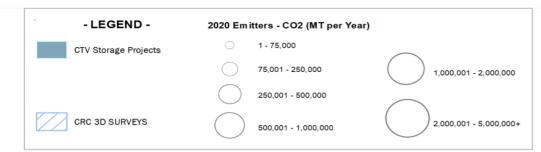
California's Premier Carbon Management Provider

145MMT

~202MMT⁵

Vault	СТ	VI	CTV II	CTV III	CTV IV	CTV V	Carbon Frontier	CTV VI	Coles Levee
EPA Permit Application Administratively Complete	Yes (26R)	Yes (A1-A2)	Yes	Yes	Yes	Yes	Yes	TBD	ТВА
Targeting Class VI Draft EPA Permits Receipt	Public Comment Period Complete	~2024	~2024	~2025	~2025	~2025	~2025	~2027	ТВА
Location	Central California			Northern California		Central California			
Annual Regional CO ₂ Emissions ¹ (<i>MMTPA</i>)	~30				~60		~30		
Est. Average Annual Injection Capacity ² (MMTPA)	~1.5 ³	0.2	~0.6	~1.8	~0.9	~0.4	~0.7	~2.5	TBA
Potential Total Storage Capacity (MMT)	38	8	23	71	34	17	27	102	TBA

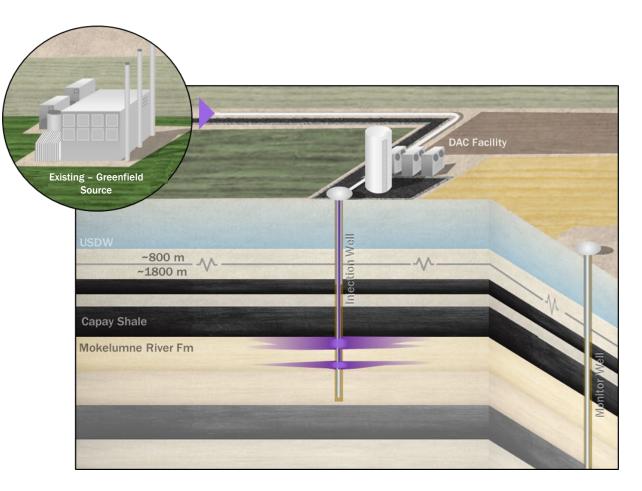

Numbers might not add up due to rounding. See Slide 8 "Assumptions, Estimates and Endnotes"


Project Location

The CTV III project area lies within the Sacramento Basin in northern California

More than 20 million metric tons per annum (MMTPA) of CO_2 emissions from natural gas-fired power plants, refineries and other industrial sources are in the San Francisco Bay Area, approximately 20-50 miles west of the project site.

California Resources Corporation / Carbon TerraVault (CTV) has secured rights and support for >50 MMT of carbon storage in a saline aquifer at ~6,000 feet.


Project Goals

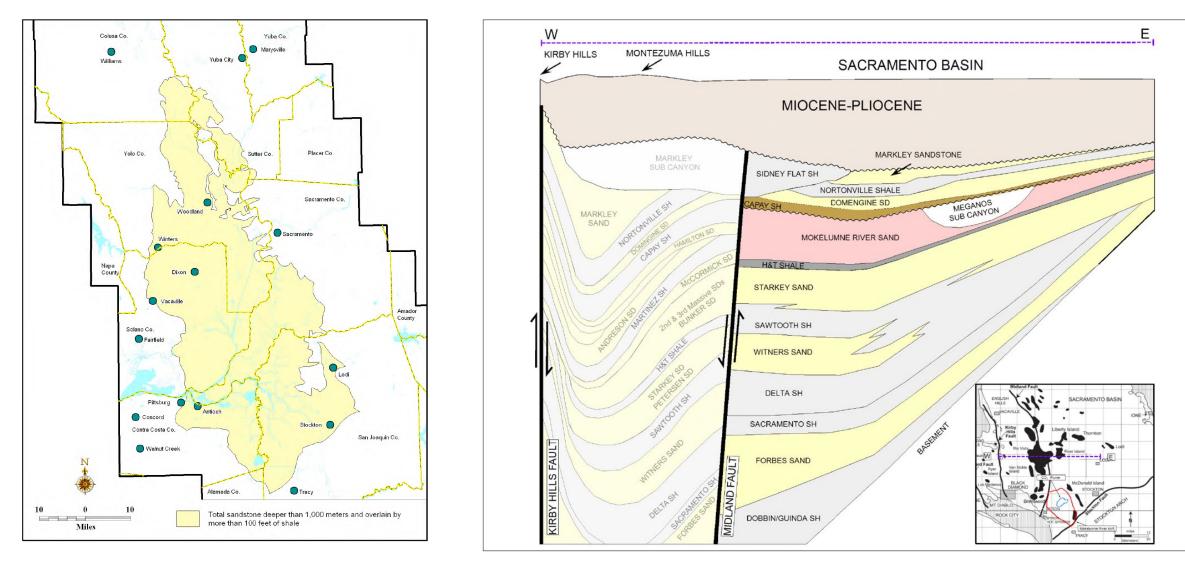
High level project goals:

- De-risk storage in Sacramento Delta
- Confirm storage complex capacity and injectivity to meet or exceed 50 MT-CO₂ over 30 years required for commercial scale deployment
- Complete initial risk assessment for project components
- Develop a CO₂ sequestration pathway:
 - Maintain key natural gas-fired power generating assets
 - Develop Direct Air Capture (DAC) to meet Carbon Dioxide Removal target in California
 - Address future industrial sources of CO₂

At the end of this project, we expect to be prepared for a future CarbonSAFE application, which will help accelerate the implementation of a commercial CCS project.

Create a comprehensive community and stakeholder engagement plan that includes diversity, equity, inclusion and accessibility.

Project Tasks


- Task 1.0 Project Management and Planning
- Task 2.0 Site Specific Characterization & Assessment of the CO₂ Storage Complex
- Task 3.0 Preliminary Project Risk Assessment with Mitigation & Management Plans
- Task 4.0 Phase III Characterization Plan and Class VI Application Update
- Task 5.0 Project Technical & Economic Feasibility Assessment, Including Conceptual-Level Design Study for CO₂ Transport
- Task 6.0 Community Benefits Plan
- Task 7.0 Data Submittal and Final Phase II Report

The project team plans to:

- (1) Acquire and analyze data to advance the existing Class VI application;
- (2) Conduct a risk assessment to improve understanding of project risks and further develop mitigation strategies (NRAP toolset)
- (3) Assess the technical and economic case for transport and storage for the project.

Sacramento Basin Geology

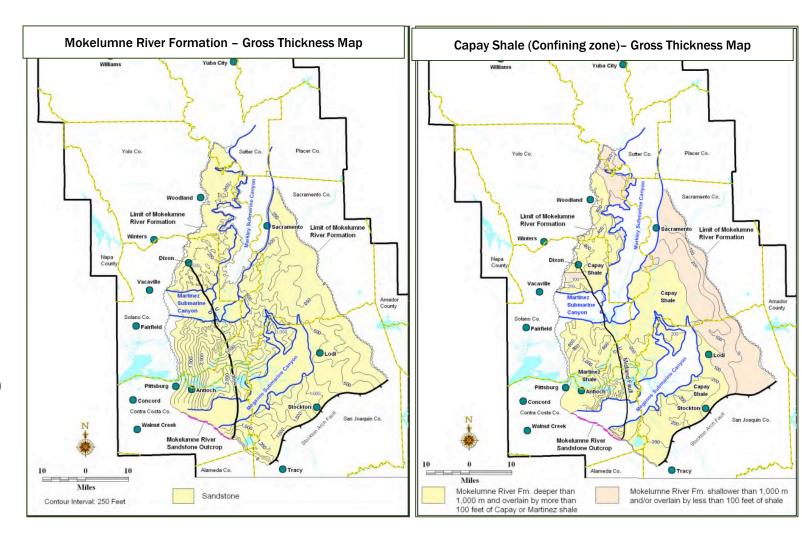
Petroleum basin with good seismic coverage, well data to confirm presence of high-quality reservoir sands. Gas fields confirm presence of confining shales, with hydrocarbon confinement for million of years.

*Downey, Cameron, and John Clinkenbeard. 2010. Preliminary Geologic Assessment of the Carbon Sequestration Potential of the Upper Cretaceous Mokelumne River, Starkey, and Winters Formations – Southern Sacramento Basin, California. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2009-068.

Subsurface Storage Complex

Sacramento Basin has been studied and contemplated for CCS through the WESTCARB initiative.

Target injection zone, Mokelumne River Fm:

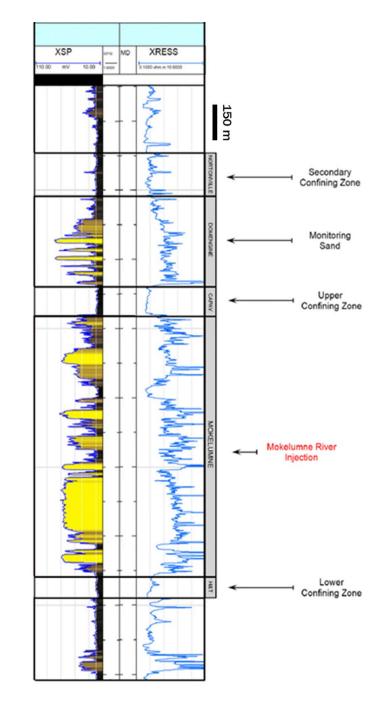

• Fluvio-Deltaic, high quality sandstone

Multiple characteristics of a good geologic sequestration target

- >100md on permeability and > 28% porosity
- Low formation dip

Overlain by the Capay Shale (Confining zone)

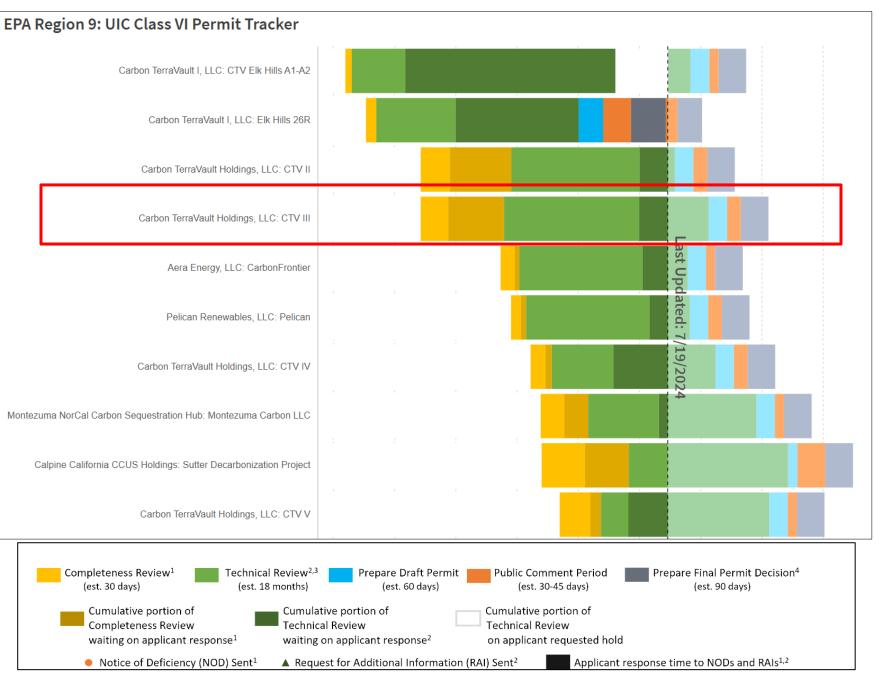
- Eocene aged formation
- Major flooding surface spanning the basin
- Low permeability seal, overlies gas fields


Stratigraphic Well Objectives

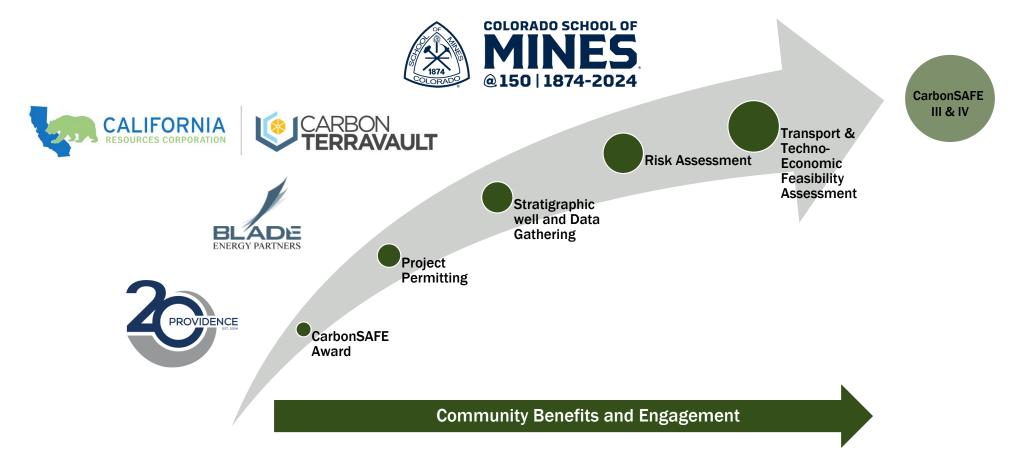
Further characterize the storage reservoir and associated confining zones:

- Drill well to ~8,000 ft depth
- Core following intervals
 - Injection zone Mokelumne River Formation
 - Confining zone Capay Shale
 - Monitoring / Dissipation zone Domengine Formation
- Sidewall core additional zones as necessary
- Extensive logging suite
- Fluid sampling
- Well tests, pressure fall off testing

Data will be used to:


- Update static geologic model and dynamic reservoir simulations
- Complete risk assessment
- Class VI update

EPA Class VI


EPA Class VI:

- 6 injectors for 2.5 MMTPA
- 71 MMT of storage
- Administratively complete on February 23, 2023
- CarbonSAFE Phase II will provide dynamic data to further understand reservoir performance and support the Class VI.

Summary and Next Steps

- Proceeding through contract negotiations with DOE.
- Ensuring critical paths addressed for seamless project execution.
 - Initiating discussions and processes with California agencies for well permitting and testing.

