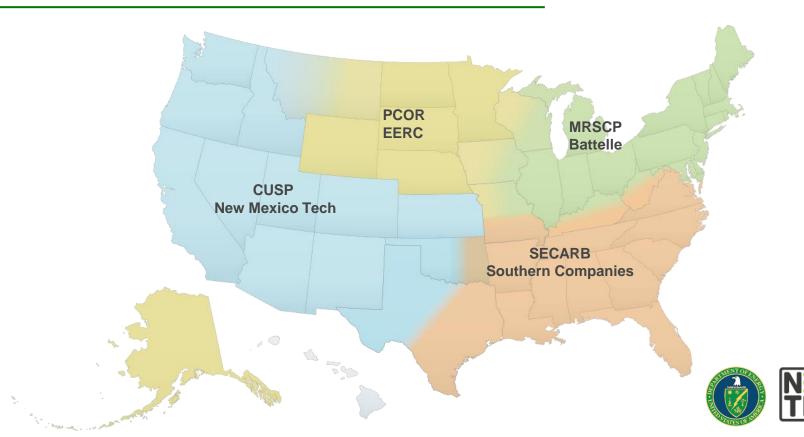
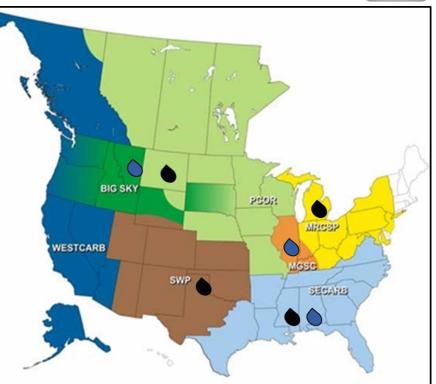
The Carbon Utilization and Storage Partnership of the Western US


Robert Balch, George El-Kaseeh, Jennifer Raney New Mexico Institute of Mining and Technology Brian McPherson University of Utah

DOE Annual Carbon Meeting, August 8, 2024

Regional Initiatives to Accelerate CCUS Deployment (2019)

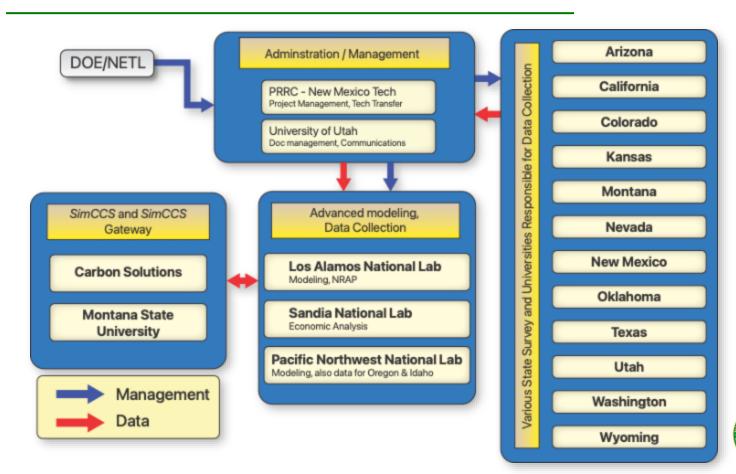

ATIONAL

Successor to USA RCSP Program (2003-2022)

- US Department of Energy Regional Carbon Sequestration Partnerships
 - Seven regional partnerships
 - Dozens of pilot projects
- Each partnership tasked with demonstrating injection of at least 1,000,000 metric tons of CO₂ as a final project
- Four projects demonstrated storage in conjunction with EOR
- Developed "best practices" for storing and utilizing captured CO₂

Who is the CUSP?

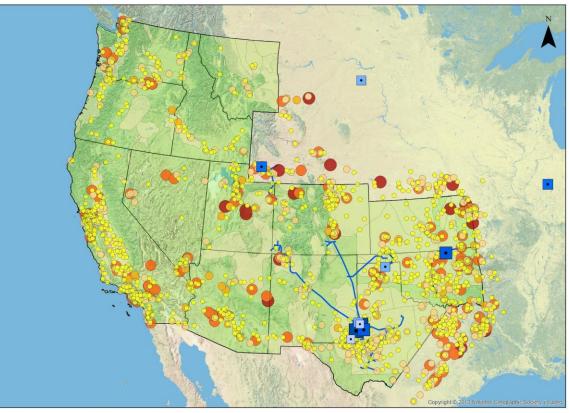
- Parts of three of the original RCSPs: SWP, WESTCARB, and Big Sky
- 15 States represented through a survey, a university, or a research institute: AZ, CA, CO, HI, ID, KS, NM, NV, MT, OK, OR, TX, UT, WA
- National Laboratories -Los Alamos, Pacific Northwest, Idaho, and Sandia



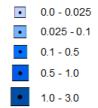
- Has directly funded to date: 15 CCUS commercialization projects in the western US
- Have 14 additional projects wholly funded by industry

Organization

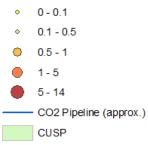
CUSP – Data Objectives (Atlas)


- Focus on collecting, synthesizing, and using existing data sets.
- Data to be incorporated into analytical and optimization models to evaluate CCUS potential and readiness. Goals include:
 - Identifying best prospects for commercial CCUS
 - Quantifying potential economic impacts
 - Developing Readiness Indices (w/ SimCCS) to identify best areas for short-term, midterm, and long-term CCUS projects
- State organizations assessing, updating, augmenting, and verifying data used in data analysis and modeling
 - Geological storage complexes (saline, stacked storage, ROZs)
 - CO₂ emission sources
 - Existing infrastructure
- Strong emphasis on technology transfer and outreach

CUSP – Sources, Sinks and Transport


CO₂ emitted and sequestered (EPA GHGRP)

Legend


CO2 Sequestration GHGRP

EPA GHGRP Total CO2 sequestered (MMTCO2)

EPA GHGRP 2022

Total reported direct emissions (MMTCO2e)

Adapted from CCUS Map EPA GHGRP

Data Integration and Management

Carbon Portal Database Development

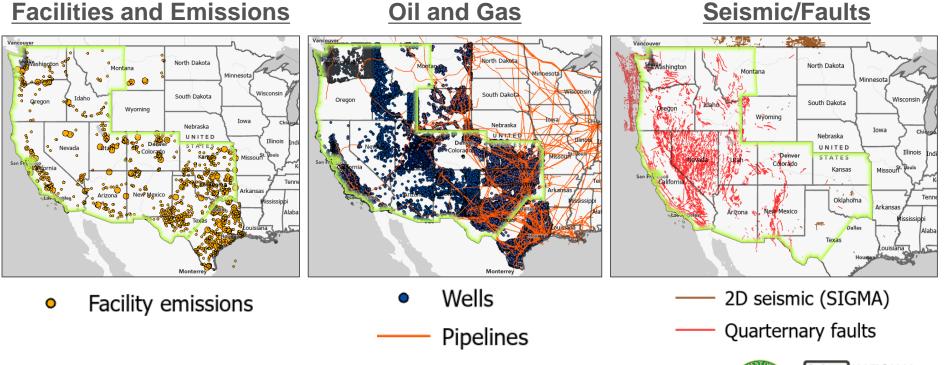
Backend

1) Database architectural design and development for long-term data needs

2) RCSP data integration: workflow design, sorting, categorization, integration complete

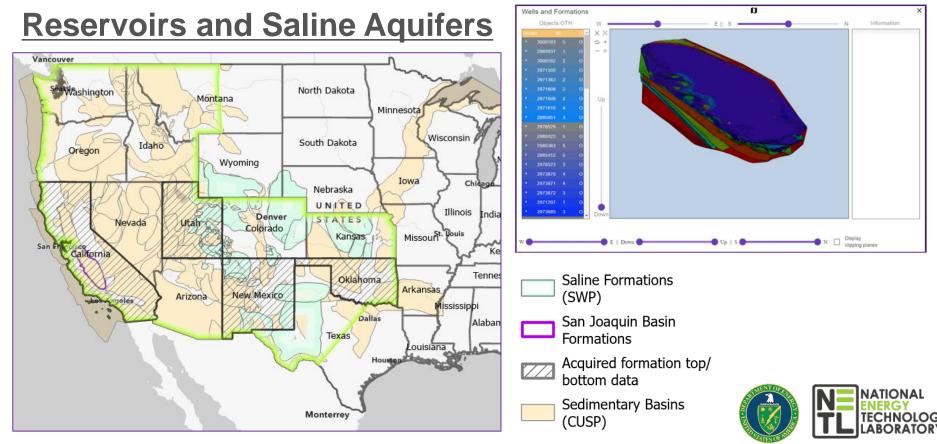
- 3) Data acquisition from various sources:
 - -CUSP partners
 - -Public data

-Contributor page: allow user to contribute data through a verified process


4) Develop and implement schema for all categories/tables

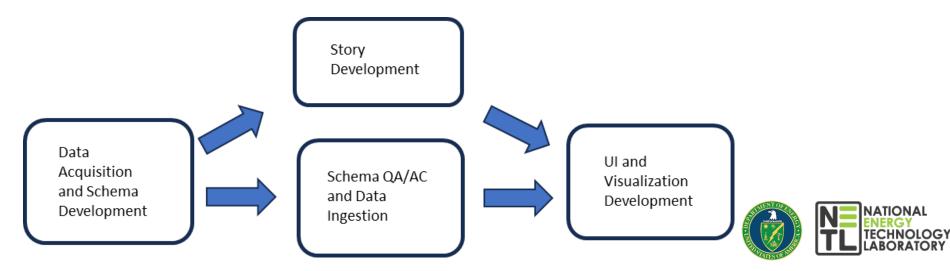
5) Indexing and data ingestion

Examples of Data Coverage

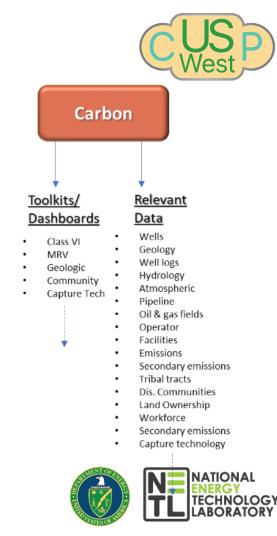


NATIONAL ENERGY TECHNOLOGY

Examples of Data Coverage



Frontend


- Created pages to access/retrieve and visualize data
 - Considering the type of data acquired and potential users, stories were developed to help aid in the design of dashboards and panels
- Backend to frontend workflow:

Looking ahead

- Research and development of toolkits/dashboards
- Continue the data acquisition process
- Implement user testing and feedback

Carbon Portal video

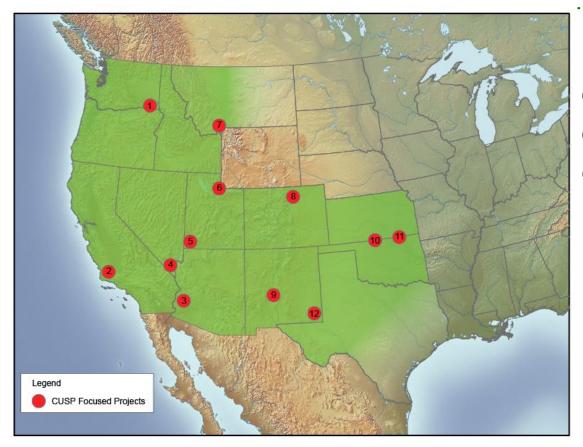
CUSP Regional Project Support

Each year since 2019, the CUSP has also sought to leverage experiences and resources in the region to assist in commercialization projects

- 2020 Funds allocated to CUSP from DOE were set aside to jumpstart three 45Q ready projects in the region
- 2021 DOE allocated funds were used to select 12 additional focus projects, selected by the management team, from 26 internally generated proposals
- 2022, Congressionally allocated funds were not given directly to the Regional Initiatives, rather DOE released a RFP to attract projects

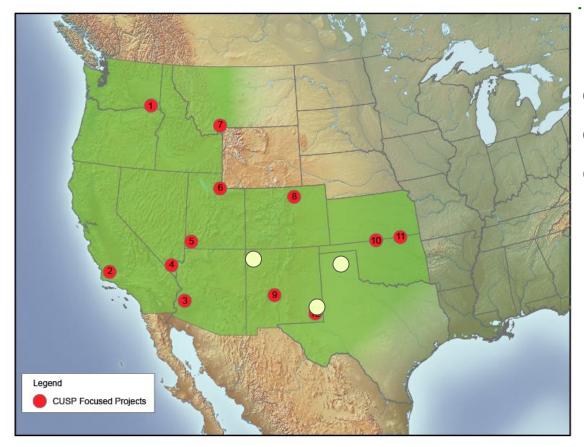
Five Projects awarded to CUSP members (\$8 Million)

CUSP Related Industry Projects

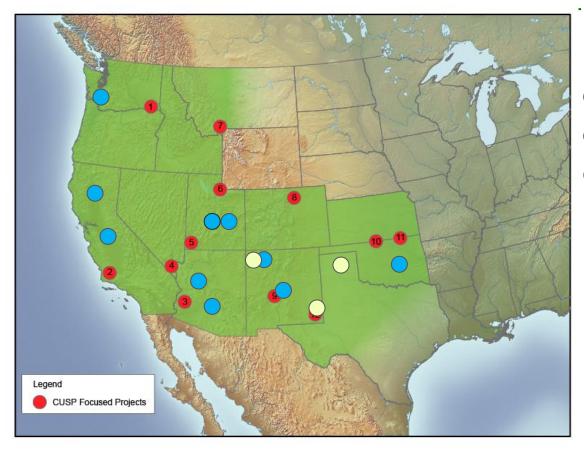


CUSP team members can provide regional and state level expertise to Industry sponsored projects, and have expanded their footprints regionally

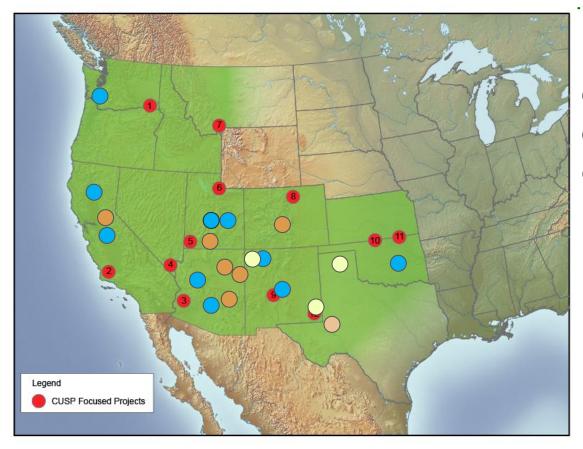
- Those teams also can access specific expertise from other areas in the region
- Currently CUSP members are directly engaged with industry in at least:
 - 2 hydrogen projects
 - 10 Midstream company projects, 7 MRV's and 3 well permits
 - 4 more pending projects!
 - 1 EOR/Storage company
 - 1 DAC company
- CUSP management is also engaged with **Stockton LEAP** which is helping to study the applicability of storage projects near Oakland California
 - CUSP provided all subsurface modeling for SF Delta and Sacramento
 - This included well blowout and fault leakage scenarios
 - Currently working on surface hydrologic risk analyses



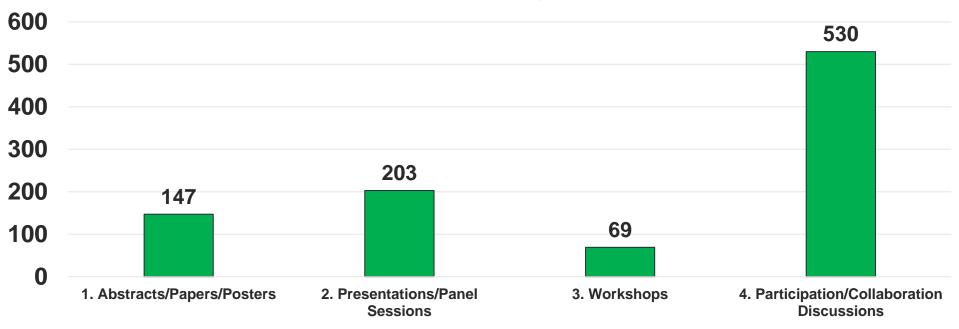
- 2020 3 Projects CUSP funded
- 2021 12 Projects CUSP funded
- 2022-2023 Associated projects Funded
- 2023 Associated projects pending
- Includes development of regional Storage Hubs



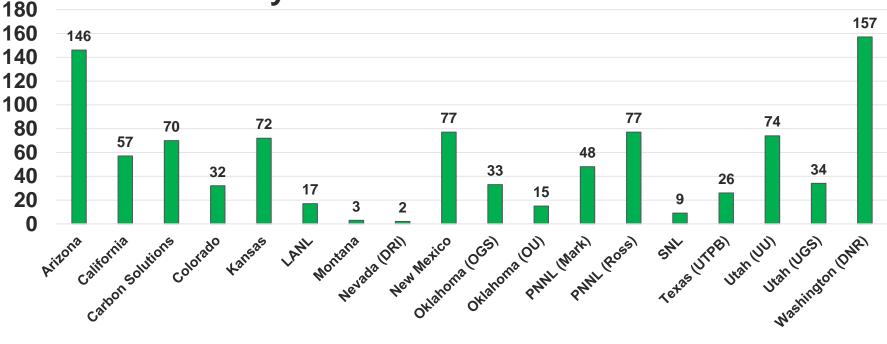
- 2020 3 Projects CUSP funded
- 2021 12 Projects CUSP funded
- 2022-2023 Associated projects Funded
- 2023 Associated projects pending
- Includes development of regional Storage Hubs



- 2020 3 Projects CUSP funded
- 2021 12 Projects CUSP funded
- 2022-2023 Associated projects Funded
- 2023 Associated projects pending
- Includes development of regional Storage Hubs


- 2020 3 Projects CUSP funded
- 2021 12 Projects CUSP funded
- 2022-2023 Associated projects Funded
- 2023 Associated projects pending
- Includes development of regional Storage Hubs

CUSP – Total Through June 2023


At Least 949 Stakeholder Interactions

CUSP High Regional Participation

By State and National Lab

CUSP Outreach and Engagement

Outreach/Engagement Priorities

Tribal Nations

- 263 Tribes within CUSP region
- Tribal reservations in proximity to CCS storage locations
- Chapter meetings and workshops planned

President Buu Nygren of Navajo Nation with CUSP team

Community & Legislative

- Four Corners community outreach
- Class VI Primacy
- Interactive Displays, fact sheets, posters
- Website improvements

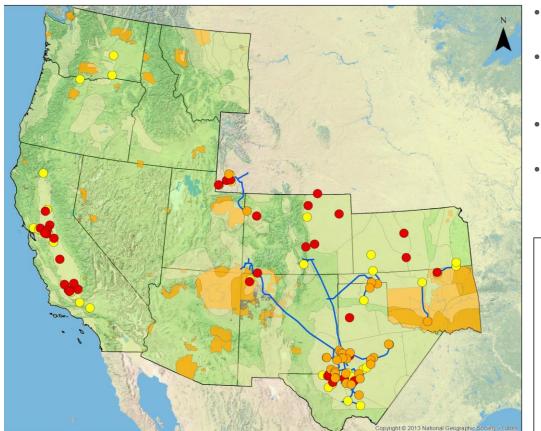
CUSP booth materials distributed at community education events

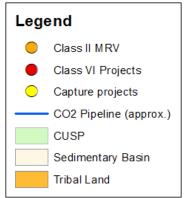
William Ampornah, a New Mexico Tech research engineer, presented a carbo management report. (David Edward Attright/Tri-City Record)

Informational sessions to county commission boards, Tribal Chapter officials, etc.

Workforce Development

- Community college partnerships
- Certification programs
- Industry outreach

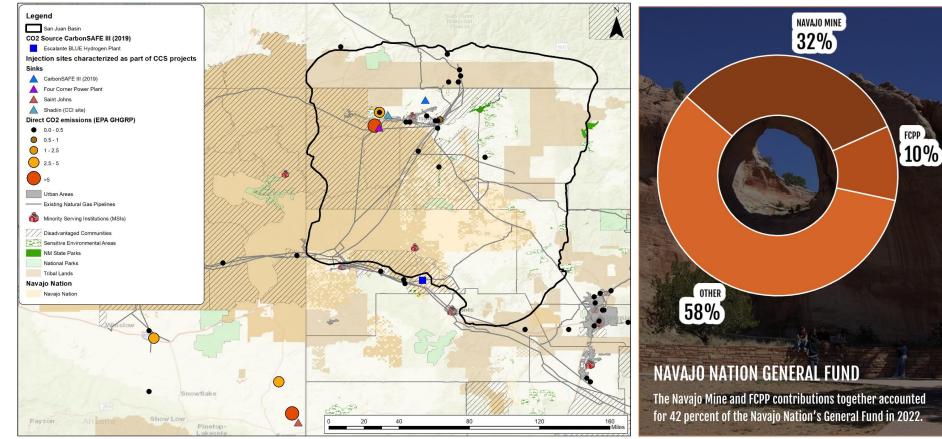

Presentations to industry-focused groups for CCUS



Tribal Sovereignty and CCS Potential

- 263 tribes within the CUSP region (representing 46% of all U.S. tribes)
- Great opportunity for Tribes within CUSP, notably in the Four Corners, Northeast Utah and Oklahoma
- Sustainable future, energy security and economic revitalization
- Notable to decarbonize energy production in Nations reliant on fossil fuel (for example, Navajo Nation)

Focus: Four Corners, Navajo Nation



- Reduction of carbon emissions from Coal plants
- Energy security and sovereignty
- Economic stability and job creation
- Funding and investment opportunities

Focus: Four Corners, Navajo Nation

Source: Courtesy of NTEC

CUSP 2023 Annual Meeting

- More than 100 CCS stakeholders at 2023 meeting in Lawrence KS
- Excellent reviews and feedbacks
- Next meeting is September 10th 11th in Santa Fe, NM

CUSP Annual Meeting September 10-11 Santa Fe, NM

CUSP 2023 Annual Meeting

CUSP Annual Meeting September 10-11 Santa Fe, NM

CUSP 2023 Annual Meeting

Check out the feedback received from a few attendees

😩 Rating: Excellent! 😭 😭 🏫 🏫

"Extremely progressive and positive thinking atmosphere. Venue was completely appropriate. Ideal for networking in the CCS space. CUSP team obviously put a lot of effort into the meeting. Overall the content, venues for socializing, and field trips were excellent. Attendees and presentations were of very high quality."

😫 Rating: Fantastic Conference 🛧 🛧 🛧 🏠

"Great meeting. The best part was the amount of time allotted for networking and conversations. There were many interesting talks too. I appreciate the organizers' attention to detail in facilitating conversations (allowing breaks, providing meals and informal spaces to converse while eating, providing transportation from conference locations to dinner/social hour locations, booking a block of hotel rooms, and more)."

"This was one of the best run conference's I've ever attended! Well done Jean-Lucien and Jenn."

😩 Rating: Wonderful 🖈 🖈 🛧 🖈

"Excellent! Given the uncertainty over BP3, I was blown away with the success, imagine how many people will sign up next year from across the US. KGS (Jenn and others) did a great job hosting. I would not even object to do the same arrangements again"

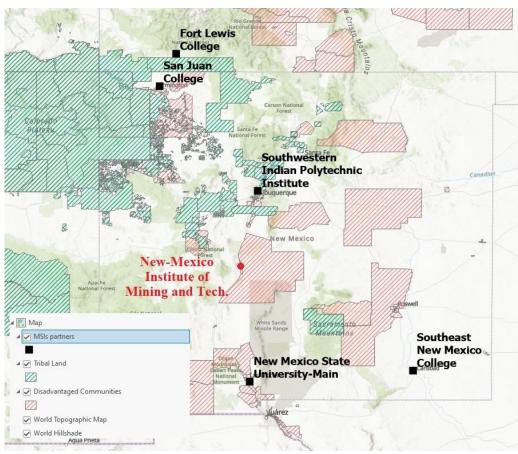
😩 Rating: Wonderful 🖈 🖈 🛧 🎓

"I think the meeting was laid out well. The first day provided a more broad overview of the mission and state of CCUS. I really appreciated the discussion panel that included Steven Grey, I think input like what he provided are going to be key to implementing projects and infrastructure development with the acceptance and participation from traditionally marginalized groups. The second day proved a good variety of speakers from academia, state, and industry. The social events and poster session were very good opportunities for networking and discussion."

💄) Rating: Outstanding! 😭 😭 😭 😭

"This is a well run and organized event. I thought the team from Kansas did a super job."

CUSP Annual Meeting September 10-11 Santa Fe, NM



TRAINING AND RESEARCH (DOE-UTR)

The Southwest CCUS Training and Research Partnership (CCUS-STRP)

- Develop and sustain a university training and research consortium focused on (CCUS).
- Bridge the gap for under-represented students from minority-serving institutions to the clean energy technology market.
- Develop research on CCUS community benefits, energy equity, and economic/workforce implications.

е	SUTHWESTERN INDIAN INDIAN INSTITUTE			S J SAN JUAI	N COLLEGE
	Table 1: Summ	nary of partner l	HBCU-MSI		
)	Institution Name	City	State	Type/ Control	MSI Type
	Southwestern Indian Polytechnic Institute	Albuquerque	NM	Public 2yr	TCCU
	Southeast New Mexico College	Carlsbad	NM	Public, 2-year	HSI
	San Juan College	Farmington	NM	Public, 2-year	NASNTI
	Prairie View A & M University	Prairie View	TX	Public, 4-year or above	HBCU
	New Mexico State University	Las Cruces	NM	Public, 4-year or above	HSI

EW MEXICO TECH

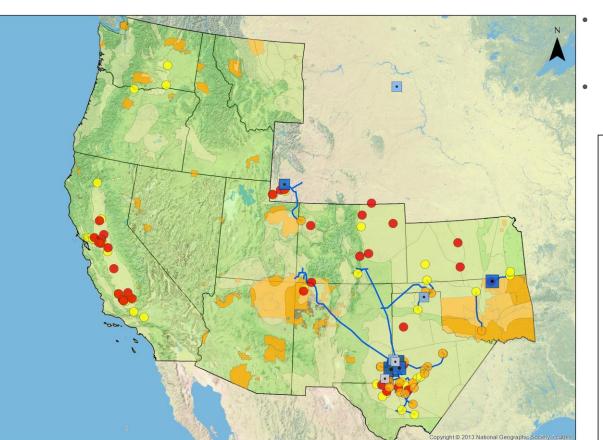
💫 Los Alamos

4844

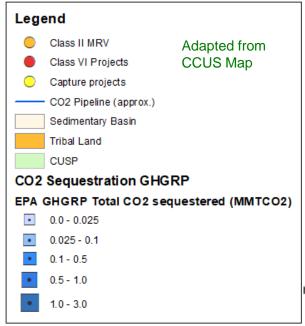
- Duration: 36 Months
- Funding: \$1.5M
- Host 33 undergraduate/graduate students from underrepresented minorities in STEM

Research Areas:

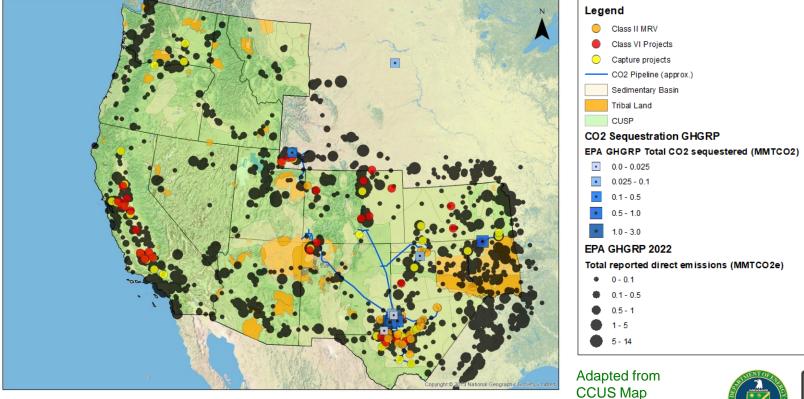
- I. Scaling Criteria for CO₂ Injection to Prevent Damaging Seismicity
- II. CO2-Induced Chemomechanical Alteration in Reservoir Rock
- III. Risk Assessment Using Machine Learning Technique
- IV. CO2 Trapping Mechanisms
- V. CCUS Energy equity and workforce implication



Storage in the CUSP Region



Capture, Class II & Class VI wells, Active and Planned

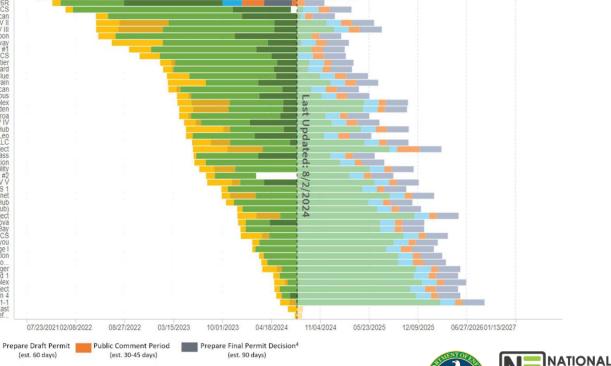


- Class II and Class VI Wells/permits within the CUSP Region
- CUSP region had 6.75 Mt stored in 2022 (all Class II)

CUSP – Capture, Class II & VI, Sequestration

Permitting: EPA Class VI Permit Tracker

UIC Class VI Permit Tracker



Technical Review^{2,3} Prepare Draft Permit Public Comment Period Prepare Final Permit Decision⁴ Completeness Review¹ (est. 30 days) (est. 18 months) (est. 60 days) (est. 30-45 days) (est. 90 days) Cumulative portion of Cumulative portion of Cumulative portion of **Completeness Review Technical Review Technical Review** waiting on applicant response¹ waiting on applicant response² on applicant requested hold Applicant response time to NODs and RAIs^{1,2} Notice of Deficiency (NOD) Sent¹ ▲ Request for Additional Information (RAI) Sent²

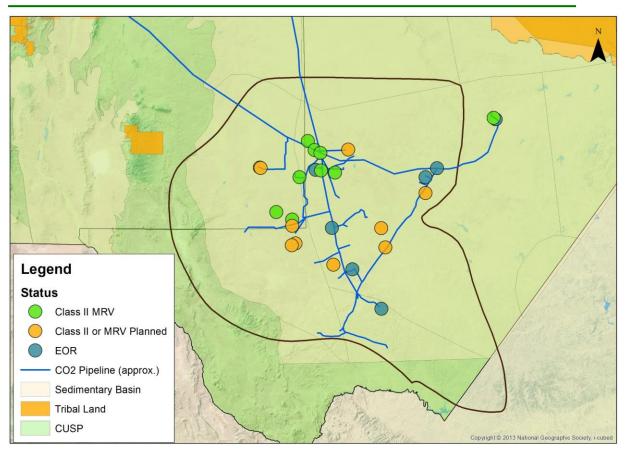
TECHNOLOGY

ARORAT

Where is CO2 Sequestered Today?

As of 8/18/2023, **76%** of the CO₂ sequestered in the US is in the Permian basin

Source: EPA GHGRP


This data was reported to EPA by facilities as of 8/18/2023

Facility Name	City	State	County	Industry Type (subparts)	Total Mass of CO2 Sequestered (metric tons of carbon dioxide equivalent)
30-30 Gas Plant	Plains	ТХ	YOAKUM COUNTY	C,PP,RR (RPT),W-PROC	12,354.6
Archer Daniels Midland Co.	DECATUR	IL	Macon	C,II,PP,RR (RPT)	428580.4
Campo Viejo Gas Processing Plant	Plains	ТХ	YOAKUM COUNTY	C,PP,RR (RPT),W-PROC	76,658.3
Core Energy Otsego County EOR					
Operations	Gaylord	MI		RR (RPT), W-ONSH	311307.6
Denver Unit	Denver City	ТХ	YOAKUM COUNTY	RR (RPT)	2,849,399.5
Farnsworth Unit CO2 Flood	Farnsworth	ТХ	OCHILTREE COUNTY	RR (RPT)	92,201.1
Hobbs Field	Hobbs	NM	LEA COUNTY	RR (RPT)	2,276,827.9
North Burbank Unit	Webb City	ОК	OSAGE COUNTY	RR (RPT)	652,430.2
Petra Nova West Ranch	Vanderbilt	ТХ		RR (RPT)	-16,814.5
RED TRAIL ENERGY, LLC	RICHARDTON	ND	STARK COUNTY	C,PP,RR (RPT)	81,963.8
Red Hills Gas Processing Plant	Jal	NM	LEA COUNTY	C,PP,RR (RPT),W-PROC	23,775
Shute Creek Facility	KEMMERER	WY	LINCOLN COUNTY	C,PP,RR (RPT),W-PROC	395,332.2
West Seminole San Andres Unit	Seminole	ТХ	GAINES COUNTY	RR (RPT)	768,740.6

CUSP region (yellow) had 6.75 Mt "officially" stored

The majority through Class II wells in the Permian

- EOR
- Class II or MRV
 planned
- Active Class II with MRV (45Q)

Focus on Midstream CCS

Focus on Midstream/Class II AGI Wells

- CUSP has worked with 5 midstream companies on well permits and MRV applications for AGI wells in the Permian basin
- Targa is by far the most active with:
 - Dozens of sweet gas amine units in the field with planned decommissioning and that CO2 will instead be brought to processing plants and ultimately sequestered

"In the old days, operators would separate the oil and gas from the produced water and dump the produced water on the ground and down arroyos. We learned a better practice and injected the separated produced water safely into formations. Sweet gas separation captures $100\% CO_2$ at its source and then vents it directly into the atmosphere - millions of tonnes of CO2 every year - which is legal. My vision is that 10 years from now, young engineers will say "can you believe that industry, supported by regulators, used to separate the CO_2 and then just dump it into the atmosphere?"

- Matt Eales, Targa

Class II AGI & Class VI Comparison

	Class II (AGI + MRV)	Class VI	
Primary purpose	Disposal of acid gases (CO ₂ and H ₂ S) to protect air quality	Specifically designed for the long-term storage of CO ₂	
Regulatory Oversight	State permits, emphasis on protection of USDW and permanent containment	Federal permitting, emphasis on permanent storage and USDW protection.	
Data acquisition	Easier thanks to existing geological knowledge and infrastructure from oil and gas operations	Less data availability	
Well design	Most could pass as Class VI		
Operation	Long-term disposal. CO ₂ injected may vary based on the volume and composition of the acid gas, opportunity to reduce sweet gas CO ₂ venting	Long-term sequestration. Injection must maximize trapping	
Monitoring	Focused on USDW protection but H ₂ S monitoring provides robust CO ₂ monitoring by proxy	CO ₂ specific monitoring	

Closing field sweet amine units and developing AGI brings advantages to mid-stream operators and to the environment:

- Increased efficiency: Central AGI wells improve operational and cost efficiencies
- **Reduced environmental impact**: Advanced emission control technologies, air quality improvement and greenhouse gases storage.
- Reduced operational costs
- Strategic storage and utilization of CO₂
- Logistical advantages (transport)
- Future flexibility (market and regulation)

Targa Permian Gas Gathering and Plant Processing

Gathering and Processing - Currently processing 3 BCF/D natural gas, Forecasting 5 BCF/D in 2028

Acid Gas Injection: Historic focus environmentally-safe processing of H_2S . Gas stream typically consists of 15% H_2S / 85% CO_2

- 45Q Incentivizing sweet amine processing capture
- Acid Gas Injection Wells:
 - Monument (one @ 13MMSCFD)
 - Eunice (one @ 13MMSCFD)
 - Red Hills (two @ 26MMSCFD)
 - Copperhead (one pending @ 20MMSCFD)
 - Wildcat (one @ 26 MMSCFD)
 - Bull Moose (one pending @ 20 MMSCFD)
 - Midway (one @ 10MMSCFD)
- MRV Plans and annual sequestration potential:
 - Red Hills (>150,000 tons)
 - Wildcat (>150,000 tons)
 - Bull Moose (>150,000 tons)
 - Copperhead (>100,000 tons)

Red Hills Complex

AGI #1 – Injecting AGI #2 – Drilling AGI #3 – Injecting

Red Hills Complex Capacity Overview							
Plant	Nameplate Capacity (MMcf/d)	Intalled Treating (GPM)	Date Commissioned				
Red Hills I	60 🛈	350	Jun-13				
Red Hills II	200 ②	800	May-17				
Red Hills III	200 ③	800	Aug-18				
Red Hills IV	230 🕘	1,600	Nov-19				
Red Hills V	230 🌀	1,800	Nov-20				
Red Hills AGI	- 6	350	May-18				
Total	920	5,700					

Targa's Viewpoint

- The CUSP enables Targa to better perform the permitting work to convert Targa's existing and future AGI wells at Red Hills and many other processing plants to EPA Subpart RR and, subsequently, IRS' 45Q
- Specifically, the CUSP partnership brings the following:
 - Proven knowledge of EPA Subpart RR and IRS' 45Q regulations
 - Formation modeling expertise
 - Monitoring, Reporting and Verification (MRV) plan development expertise
 - Top-level relations with regulatory representatives
- A successful sequestration project delivers a significant reduction to Targa's carbon oxide footprint
- Investors understand the value of a strong ESG program and are supportive in our demonstrating leadership in this arena, inclusive of carbon oxide emissions reductions

CUSP Take-Aways

- The CUSP has databases of useful information necessary to create robust geologic models, flow models, and economic studies
- Has access to Intelligent computer applications and National Lab products which can optimize connecting sources and sinks, and long range development and economic analyses of projects
- Has experience in generating CO₂ storage models, MRV applications, and in engaging with stakeholders
 - Built a team specifically for permitting Class VI and MRV's region wide
- The CUSP is actively seeking opportunities to help companies access 45Q and has built regional expertise to address local issues

