
DE-FE0032249

7/1/23 through 5/31/25

Govt. Share: $989,655.00; Cost Share : $280,488.00; Total : $1,270,143.00

Subsurface mafic and ultramafic rock 

mapping and analysis for carbon 

mineralization in the US (SubMAP-CO2)

Estibalitz (Esti) Ukar

The University of Texas at Austin



Key Participants

• The University of Texas at Austin
• Esti Ukar (PI) 

• Shuvajit Bhattacharya (Co-PI) (Geophysics, Petrophysics)

• Nicolas Espinoza (Co-PI) (Geomechanics, Carbonation experiments)
• Lily Horne (3D model and database)

• Julia Gale (Bedrock geology, Database)

• Andras Fall (Carbonation experiments)
• Ramon Gil-Egui (Economics, source-to-sink assessment)

• Brent Elliott (Economic geology)

• Lorena Moscardelli* (Texas)
• Mert Ugurhan (GIS)

• Sue Hovorka* (CCUS)

• Rama Arasada (3D models) 
• Yuntian Teng (experiments)

• Lamont-Doherty Earth Observatory/Columbia University
• Peter Kelemen* (Carbon mineralization, sampling)

• Jakob Tielke (Carbon mineralization experiments)

• Christine McCarthy (Carbon mineralization experiments)



Knowledge gap: subsurface ultramafic rocks

Blondes, M.S., Merrill, 
M.D., Anderson, S.T., and 
DeVera, C.A., 2019, Carbon 
dioxide mineralization 
feasibility in the United 
States: U.S. Geological 
Survey Scientific 
Investigations Report 
2018–5079, 29 p., 
https://doi.org/10.3133/ 
sir20185079

https://doi.org/10.3133/


Project Objective

• Characterize and document:
• Location

• Volumetric extent

• Mineralogy (including critical minerals, asbestiforms)

• Petrophysical characteristics (grain size, grain density, porosity, permeability)

• Carbonation potential

…of mafic and ultramafic rocks in the subsurface of the USA where 
large amounts of CO2 can be stored via in-situ carbon mineralization



Goals

• Subsurface 3D mapping of mafic/ultramafic bodies

• Rock characterization and analysis

• Carbonation reaction rates and carbonation capacity

• Identification of subsurface CO2 storage opportunities in the US

Deliverables

➢ Subsurface 3D map and core database (Y1Q4)

➢ Metadata of subsurface mafic and ultramafic rocks linked to the 3D subsurface 
model (Y2Q3)

➢ Source-to-sink assessment and ranking of sites across the USA for in-situ 
mineralization (Y2Q4)



6 Tasks schedule





Task 1: Project Management and Planning

• 1.1 Project Management

• 1.2 Community Benefits Plan
Outreach and dissemination



• Eastern states

• Western states

• Mid Continental Rift

Task 2: Subsurface mapping

After Lund et al. (2015)

• 2.1 Database/literature review 
          
         

                 
         

          
              

            
      
       
       

      
        
         
         
       
         
     

      
      

         
        
       

Krevor et al. (2009)

Basement domains



• 2.2 Gravity and magnetic surveys

Upward continued map of 

magnetic anomalies to 20 km 

height

Public data sources (USGS)

• Geobodies with high magnetic 
anomalies 

Residual magnetic anomaly map 

based on USGS map



Pecos Mafic Intrusive Complex (Barnes et al., 1999)  
Coal Creek serpentinite (serpentinized 

harzburgite)(Mosher et al., 2008)

• 2.3 Non-public data sources
• Texas



• 2.4 Well penetrations

• Wells/cores that have 

penetrated basement

• Mafic/ultramafic 

basement



• 2.5 Subsurface 3D model and volume calculation

3D magnetic inversion showing magnetic susceptibility 

distribution beneath Coal Creek
Depth slice of the magnetic susceptibility 

model at depth -1.11 km

Inversion of residual total field (RTF) magnetic data using a Magnetic Vector 

Inversion (MVI) code (SimPEG Python open-source package; Cockett et al., 2015). 



• 2.5 Subsurface 3D model and volume calculation

If SI <0.03 = 32 km3

Inversion of residual total field (RTF) magnetic data using a Magnetic Vector 

Inversion (MVI) code (SimPEG Python open-source package; Cockett et al., 2015). 

Coal Creek

3D magnetic inversion showing magnetic susceptibility 

distribution beneath Coal Creek



Task 3: Rock sampling and characterization

• 3.1. Subsurface samples

• Challenge: Scarce and difficult to obtain

 

• 3.2 Field sampling

• 3.3 Rock characterization

• 3.4 Integrated petrophysics



• 3.1 Core sampling

Twin Sisters, WA

The Geysers, Calpine, CA

• Thor complex (IA): 14 samples

• Tennessee (TN): 2 samples

• Tamarack (MN): 1 sample

• Nellie Well (TX): 265 thin sections



• 3.2 Field sampling

Twin Sisters, WA

The Geysers, Calpine, CA

• Twin Sisters dunite (WA)

• Ingalls complex (WA)

• Josephine peridotite (OR)

• Coal Creak serpentinite (TX)

• Yellow Lake serpentinite (NY)

• Franciscan, Trinity, Coast Range 
         ,     G      … ( A)

~100 samples



Core database + retrieved samples

Twin Sisters, WA

The Geysers, Calpine, CA



• 3.3 Rock characterization

Twin Sisters, WA

IP23-07A

Ol

Di

Cr-sp

Ni2S3

Optical microscopy SEM-EDS



Twin Sisters, WA

The Geysers, Calpine, CA

XRD (>5%)

EDS spectra

Semi-quantitative elemental composition of minerals



• 3.4 Petrophysics

• Porosity, permeability, magnetic susceptibility

Micro-CT



Task 4: Carbon mineralization experiments

• 4.1. Batch reactions, autoclave

• 4.2. Flow-through experiments

• 4.3. Pressure vessels and synthetic fluid inclusions

• Array of UT Austin and Lamont labs



• 18 rock types

• 1, 4, 12, 19, 27 days at 90⁰C and 1-2 atm

• Sample fluids, solids, pH, carbonation

• Use to define reaction conditions for autoclave experiments

• Reaction Screening Experiment Platform (RSEP)

• Batch Reactions

8 mm

19d



1-inch core plugs 
from Coal Creek 

Serpentinite

• CT-transparent compact flow-through system

• Conduct experiments inside CT scanner
• Undisturbed for 1-2 months
• Periodic, systematic scans



• Flow-through experiments (UT Austin)
• Simulate P, T conditions at depth

• Design new apparatus for <1 cm 
diameter core plugs



• Autolab 2000 triaxial deformation apparatus (LDEO) 

• Simulate P, T conditions 
at depth

•                ’  
response to CO2 



Task 5: Source-to-sink assessment

2) Nearby CO2 (~100miles) sources
- EPA’  F      GHG     

1) Updated 3D model of subsurface rock volumes
- Carbonation potential based on mineralogy etc.



3) CO2 transport (pipeline) network
- Princeton Study Proposed Trunk CO2 Pipeline 
Network (Larson et al., Net-Zero America: Potential Pathways, 

Infrastructure, and Impacts, Final report, Princeton University, 
Princeton, NJ, 29 October 2021)

4) Societal and environmental constraints
- Ramon Gil-Egui, Jose Ubillus, Sue Hovorka. Ongoing 

project assessing the CO2 storage site selection 
socioeconomic and environmental risks. DOE/NETL FECM 
2023 annual technical report meeting, Pittsburgh PA 2023

• Rank potential sites for in-situ carbon mineralization



Task 6: Public data sharing

• Results from tasks 2-5 will be integrated into public databases:

• DOE NETL Energy Data Exchange (EDX)

• USGS Minerals Database (USMIN)

• Geological Survey’s Earth Mapping Resources Initiative (Earth MRI) by site- site-
specific characterization of resources. 

• Database systems managed by the State Geologic Surveys

• Construct a web portal for easy access to the data generated in this study



Next steps

• Task 2: Continue subsurface mapping, core sampling, and 
volumetric estimates

• Task 3: Continue rock characterization of old and new samples
• Add geochemical analyses

• Task 4: Kinetics and carbonation reaction rate experiments
• Batch experiments of new samples at same conditions

• Select a few for flow-through experiments

• Analyze fluids, solids, carbonation capacity

• Task 5: Source-to-sink assessment
• Rank sites

• Task 6: Data sharing and accessibility



Lessons learnt to date

• We have a very poor understanding/sampling of US 
mafic/ultramafic basement rocks   - drill more cores!

• Samples difficult to obtain, small in size

• Cross-project sample sharing

• Drill well/core documentation is poor in most geo state surveys
• More resources 

• Large ultramafic bodies exist within upper 2 km 

• Rapid carbonation reactions even at T <100⁰C
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