

ACT4 SPARSE EM Modeling and Data Acquisition

11

Teknologi for et bedre samfunn

Funding agencies from 16 countries, regions, and provinces are collaborating on calls and knowledge sharing within CCUS

- Alberta (Canada)
- USA

- Denmark The Netherlands
- France
 Norway
 - Germany Nordic countries
- Greece
 Romania
- Italy

- Spain India
- Switzerland
- Turkey
- UK

•

ACT4 SPARSE:

Sparse Passive-Active Reservoir monitoring using Seismic, Electromagnetics, gravity, and surface deformation

- Enable low-cost long-term monitoring & facilitate GT storage
- SPARSE background monitoring
 - Node-based conformance and containment monitoring
 - Sparse data, sparse nodes
 - May trigger target-oriented active surveys when needed
 - Reduce / remove need for conventional active surveys
- Main requirements:
 - Extract sufficient information from sparse data for detection and quantification
 - Track pressure, saturation, stress and strain changes
 - High repeatability
 - Low-cost installation, operation, maintenance over decades
 - Solutions must be practical

LBNL Research Topic #1

Numerical Modeling, Implementation, Testing, and Data Processing for Optimized Land-Vertical Source (VS) CSEM measurement

Associated Project Work Packages and Tasks

- WP2 : Sparse Geophysical Monitoring and Quantification
 - Tasks
 - Task 2.1 Sparse Geophysical Monitoring
 - Task 2.2 Data Exploitation
 - Milestones and Deliverables
 - M2.1, D 2.1 Report /paper describing CSEM modeling study for CaMI Site
- WP4 : Node Design and Implementation (LBNL)
 - Tasks
 - Task 4.1 Optimum Design
 - Task 4.2 Technical Realization
 - Task 4.3 Automatic Data Processing, Reduction and Evaluation
 - Milestones and Deliverables
 - M4.1, D4.1 Report describing optimized vertical source VS CSEM system
 - M4.2, D4.2 Report on deployment of VS CSEM System at CaMI and first data acquisition
 - M4.3, D4.3 Report on first year of quarterly VS CSEM data acquisition
 - M4.4, D4.4 Report on first year of quarterly VSD CSEM data acquisition
 - D4.5 Guidelines/paper for Implementation of SPARSE Monitoring (with SINTEF)

Berkeley Lab – Earth & Environmental Sciences Area

EM Modeling and Measurements at CaMI

- S1 Shallow VED in water well
- S2 Deep VED using ERT array on OBS2
- S3 Energize Steel casing of OBS1

Berkeley Lab – Earth & Environmental Sciences Area

EM Nodal Receivers

Berkeley Lab – Earth & Environmental Sciences Area

EM Models

- 1D Layered Electrical Resistivity Model
- CO₂ Plume Resistivity (Archie's law, m=n=2)
 - S_{CO2}=0%: 9.83 Ohm-m
 - S_{CO2}=10%: 12.14 Ohm-m
 - S_{CO2}=20%: 15.36 Ohm-m
 - S_{CO2}=30%: 20.06 Ohm-m
 - S_{CO2}=40%: 27.31 Ohm-m
 - S_{CO2}=50%: 39.32 Ohm-m
 - S_{CO2}=60%: 61.44 Ohm-m
 - S_{CO2}=70%: 109.22 Ohm-m
 - S_{CO2}=80%: 245.75 Ohm-m
- 7m thick, CO₂ plume radius: 100m

Well / Source Construction : Step Off Tx

Berkeley Lab – Earth & Environmental Sciences Area

Effect of Surface Casing on Close (50m) Measurements

Berkeley Lab – Earth & Environmental Sciences Area

Effect of Moving Receiver to 100m away

Berkeley Lab – Earth & Environmental Sciences Area

Surface Ex at Further Offsets

400m offset

Surface Ex versus Receiver Offset : Freq Domain

50m offset

100m Offset

200m offset

400m Offset

Well / Source Construction

Berkeley Lab – Earth & Environmental Sciences Area

Surface Ex at Different Offsets: Time Domain

50m offset

100m Offset

Surface Ex at Different Offsets: Frequency Domain

100m Offset

Well / Source Construction : Freq Domain

Surface Ex at Different Offsets : Frequency Domain

50m offset

200m offset

CaMI Field Measurements : July 1-5, 2024

Berkeley Lab – Earth & Environmental Sciences Area

Source 1 or Tx300 – Time Domain

Receiver Site 1

Source 3 or Tx400 – Frequency Domain

Receiver Site 3

Frequency (Hz)

Source 2 or Tx100 – Frequency Domain

Summary

- Numerical Modeling Shows:
 - Surface vs Deep Dipole Deep dipole offers better sensitivity
 - Time vs Frequency Domain Measurements
 - For Surface VED Source, time domain measurement more sensitive than frequency domain, especially at close source-receiver offsets
 - For deeper sources, low frequency (DC) response provides similar sensitivity
 - Surface steel casing on transmitter well has significant effect on time domain responses short offsets out to measurement locations 50m to 100m away from well
 - Electrically energized steel casing offers sensitivity better than the shallow VED source in the frequency domain, but not quite as good as VED time-domain measurement

Summary

- Data Acquisition Shows:
 - Surface vs Deep Dipole Deep dipole data a bit noisier than shallow data
 - Time Domain Measurements The time domain measurements for Tx100 and Tx300 show sign flips indicating that either
 - The dipoles aren't vertical or
 - There is significant 3D structure or infrastructure to distort the fields or
 - The steel casing segments are producing an IP effect?
 - The frequency domain results with the CO₂ pump off and then on show interesting results.... This will need additional research and repeat measurements to prove
 - The next round of measurements are scheduled for the week of September 30

Funding Acknowledgement

- Most of the project funding for LBNL's work is provided by the US DOE via Field Work Proposal number FP00015750.
- Other research members of the ACT4 SPARSE project include SINTEF Norway who serve as the international project lead, The University of Calgary, and Carbon Management Canada.

Additional Acknowledgements

 Funded LBNL at \$98k to date to pay for equipment rental

 Providing cost effective equipment rental and training

 Using UBC codes (SIMPEG 2D and 3D) for modeling