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Science-informed Machine Learning to Accelerate Real Time (SMART) LABORATORY

Decisions in Subsurface Applications

This project was funded by the U.S. Department of Energy, National Energy Technology
Laboratory, in part, through a site support contract. Neither the United States Government
nor any agency thereof, nor any of their employees, nor the support contractor, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, tfrademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.
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Fossil Energy and Carbon Management.




Our Motivation

Growing momentfum for Develop relevant experience /
o . . understanding among stakeholders
o rapid commercial scale . g | |
Facilitate decision-making process during

deploymenT of CCS project planning, permitting, operations

Data interpretation for characterization

TrOdi.ﬂonC]l GﬂO|ySiS inVO|VeS Pre-injection planning and system design
pmelCS-bOS@d mOdels Observational data integration for

operational decision making

Recent focus on Machine Learning based
computationally expedient alternatives




%% SMART- Initiative

Science-informed Machine Learning to Accelerate Redl

SYIAXY | Time (SMART) Decisions in Subsurface Applications

VISION: Transform our ability to make better, informed decisions related to the
subsurface through real-time visualization, forecasting, and virtual learning.

MISSION:

SMART Functionalities

| N

Real-Time Visualization
“CT" for the Subsurface
.

ML-based Rapid

Prediction

——— Virtual Learning

ML-based Real-Time
Forecasting

“Advanced Control Room”

Improve the ability to consolidate technical knowledge, site-specific
characterization information, and real-time data in a digestible way.

Enable the optimization of carbon storage reservoirs by creating a capability for
“real-time” forecasting of carbon storage reservoir behaviour.

Enable improve the ability to understand and communicate expected subsurface

behaviour during carbon storage operations to non-experts.




Science-informed Machine Learning to Accelerate Real Time
(SMART) Decisions in Subsurface Applications

SMART Initiative

Task 2: Virtual learning to support permitting

Task 3: Advanced learning and computational methods

Task 4: Site-specific data management & imaging

Task 5: Site-specific storage reservoir modeling

Task é: Site-specific decision support & visualization

Task 7: Site-specific data curation

Task 8: Geomechanical Modeling and Exploration
of Longer Term and Emerging Priorities

Technical Team
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Current Progress s,

SMART Initiative FENDDDRO N D)W, Yo

SMART has developed a conceptual design of the SMART Visualization and
Decision Support Platform.

® Several modules have been developed (Model Explorer — VLE, USM (Unified
Simulation Module), STRIVE (SMART Tools Rapid Visualization Environment
Module), ORION (Induced Seismicity Module), RTFO (Real-time Forecasting and “
Operational Control Module). Developments are continuing.

ORION (NRAP/SMART)

® Developed a Machine Learning (Transfer Learning) tool to forecast CO, plume ML History Match

saturation and pressure under operating conditions different from those used
to train an earlier ML model.

® Developed a Machine Learning (ML) based algorithm for fault/fracture Virtual Learning a8

identification from FMI logs and passive seismic signatures to further refine the Environment BEEEsaaafe N
geomodel. Module (VLE) it
® Developed an ML-based data-assimilation/history matching frameworks for EaE"

calibrating a site-specific dynamic model to pressure, saturation, temperature o .
data. Data Assimilation and History

vt oy e Ot Matching with ML
: Porosity

® Developed Model Explorer tool to rapidly explore various modeled scenarios
and impact of heterogeneity and/or uncertainty using ML-based fast predictive —
models.

® SMART-NRAP: Developed the Operational Forecasting of Induced Seismicity
toolkit “ORION” (ORION), an open-source, observation-based ensemble —— er—
forecasting toolkit, which is geared towards helping operators understand ' " :
potential seismic hazards at a site.

2
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FMI-based Fracture, Bedding,

® Developed a tool based on integrated computer vision and deep learning and Baffles Identification using
workflows for automating image log analysis, helping to rapidly and precisely
detect fractures and baffles in subsurface formations. ML (FBBIML) IBDP SNL Model
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TASK 2: Wiring Diagram -Virtual Learning for Permitting

2.3 Rapid Forecasting Fast Predictive

Class VI needs models

Enable real-time forward
modeling

stakeholders

Identify bottlenecks in
clas VI permit review

2.2 ML-Based Site
Characterization

ShavEst Faster digestion

of characterization data
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Regulatory
agencies

Site operators

Public



TASK 2: Example tools

Tool: Model Explorer

Highlight # 1: AoR &
Corrective Action -
Dynamic Simulation

Site Map

Settings
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Tool: SmartSeis

Highlight # 2: Site Characterization
Seismicity Detection 2

Seismic
history

Faults &
sractures

N Facies
changes
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Site Characterization

Conventional methods

» Using catalogs /traffic light

* Biased and hindered by noise
+ Slow

ML based method
Uses trained models (detects ~40 times more

events)
« Remove bias and noise
 Fast




lask 3, Advanced Learning and Compvuiational
Approaches

Activities

 1: Software Quality Assurance (QA)

* Ensure that any software in Phase 2 meets a set of agreed upon quality and reliability standards,

allowing those tools to satisfy any requirements dictated by the application in which they are being
used

« 2: Cross-activity Integration
o |dentify overlaps in techniques and methodologies developed during Phase 1T and
adapting them for ease of applicability by 2A and 2C teams
» 3: Advanced Machine Learning Methods

o Focus on Al/ML methods that can make SMART transformational ML models and
overcome challenges identified in Phase |

* 4. Advanced Computational Approaches

o Focus on advanced methods to enhance performance (accuracy, efficiency,
privacy) that could not be achieved by a single ML method




lask 3, Advanced Learning and Compvuiational
Approaches

Accomplishments

 Advanced ML Methods & Advanced Computational Approaches

o Topic Area: Fast and Flexible Solutions for Fluid Flow Prediction

— Built flexible models that leverage advanced approaches (e.g., Neural Operators) to handle the
dynamic evolution of pressure, saturation, and stress and can serve as the basis to expand to solve

other field prediction problems
= DeepONet
= Fourier Neural Operator
= Graph Neural Operator
= PICKLE
= HGGNN
= Wafer Scale Engine Field Equation Application Programming Interface

—These models also allow for the incorporation of physics and scientific knowledge to increase the
user confidence and understanding of the model reasoning processes

— Models tested on the clastic shelf dataset, with some models also being tested on IBDP

U.S. DEPARTMENT OF




TASK 4: Wiring Diagram -Data Organization and Imaging
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Task 4 - Reservoir Property Imaging Workflow for Any Type of
Geophysical Data

Provided by TASK 5 via Universal Data and Mod Platform

Initial Static and Dynamic
Geo Models

Multiple Simulations of
Multiple realizations of Predicted Reservoir
Reservoir Properties (¢, Pressure, Sat, Stress etc.
k etc.) everywhere in model

Multiple Realizations of Geophysical
Properties (Anisotropic seismic P and S
Velocities, etc.) everywhere in model

(Stochastic)
Geophysical
, | Property
Iterative NI . Simulation
Stochastic R Fast Reservoir/ '
Reservoir b Modeling
Simulation it

Petrophys -
Rock Prop
Relationships

N Simulations of Predicted
Reservoir Pressure, Sat, etc.

extracted at measurement
locations/ sensing area

Geophysical

Synthetic
Modeling

Training Data

Minimally processed

Geophys|ca| Data Multiple Simulations of

Geophysical Data
(Passive and/or Active
Seismic, etc.) at sensor
locations

Estimates of
Reservoir Props
(CO2 Sat., Pressure,
Stress, etc.) &
Uncertainty

ML Driven
Conversion

Resistvity 1‘ ) % Random Sampling of
’ . : Training data, multiple
U-Net Creation, ...

Velocity

Density

ML Driven
Downscaling




Task 4 - Fault/Fracture Imaging

ORNL [ Passive Seismic }_»[ Signal Arrival }_>£ Seismic Event }_»{ Fault & Fracture )
Workflow (__Waveforms TL-Picker Times DL-TT-Locator, Catalog =) ML-Fault-Mapper { )
\ \A
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TASK 5: Wiring Diagram -Storage Reservoir Modeling
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Task 5 -Dynamic Storage Reservoir Modeling

Vision: Provide real-time modeling, data assimilation and forecasting to support:
« Field management -- o maximize storage while minimizing pressure buildup

« |Induced seismicity risk assessment Carbon Storage Simulation
CCs1 Vw1 | — EE;‘%( \gtvgu . |v\_m ccs2 | Workflows Today:
b ! | NS ‘ L A . .
TR l% wl WI Stro.nfg phys.lcal basis
AT CERNY L ] * Decision-driven
‘ e Al 3 == |+ Ensemble-based
i 5 -
Mt. Simon B N 2
|t— e Pma:,:- * Human-labor intensive
. : / *I:::‘;:::::" | * Slow and non-interactive

\\ . waw |+ Heuristic optimization

N \\ 1.000000

IR 5 L=y

| fl Vertical Exaggeration 5X
<k li Green Cylinders in Injector: Perforation Intervals

SMART Vision:

e Strong physical basis
* Decision-driven

*  Ensemble-based

: ﬂ/ 5
Mts-/meqﬁl'lp

Vertical Exaggeration 5X
Green Cylinders in Injector: Perforation Intervals

\ * Human-labor efficient
Figure: Physics-based simulation of CO, saturation plume at the end of 3 years injection (left) * Highly interactive

at the lllinois Basin-Decatur Project (IBDP) site with a geologic model (right) * Automated workflows
[https://edx.netl.doe.gov/dataset/illinois-state-geological-survey-isgs-illinois-basin-decatur-project-ibdp-geological-models] o Rap|d data assimilation

S. DEPARTMENT OF




Task 5 -Dynamic Storage Reservoir Modeling

Cell Grid ()

Key Idea: Use ML models, frained on physical simulations, to create a rapid surrogate
« Learns physical-basis embedded in full-physics models
« |s exposed to a broad array of possible surface configurations (porosity, permeability, baffles)

« Achieve prediction accuracy, training efficiency (with 1.73 M cells of IBDP model), and
portability of trained models in an interactive user interface (i.e., unified simulation module)

Saturation Plume Comparison for Run 10 at Time 36
(Extent for Saturation Change > 0.01)

30

Porosity i Permeability (md)

Truth Plume
= NETL, IOU = 0.882
= SNL, IOU = 0.855
— UIUC, IOU = 0.855
— UTBEG, 10U = 0.923

35

40

45

50

55

]

_ Figure: lllinois-Basin Decatur Test. Comparison of physic-based model
o (gray) with four ML models (lines), showing predicted saturation plume

dimensions (plan view) on test case for IBDP.
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User Interaction

Core Platform Tools

Database Management

Seismicity & Microseismic

Analysis Modules

Workflow
Recipe
Selection

Landing Page

Multiple
Realizations

Initial GeoModels

Rock Properties

Backend

Support for
ML Proxy Models Analysis
Modules
G Reservoir
Flow Training DB .
9 Property/State ML-Based Fracture/Fault Mapping

Images

Geophysical Model Training DB




Operational FoRecasting Of INduced Seismicity (ORION)
SMART AND NRAP

 ORION serves as the Induced Seismicity
Module for Platform

» Key inputs:
o Observed seismic activity
o Pressure model
o Geologic model

* Outputs:

o Independent seismic forecast models that are
based off different physical assumptions,
statistics, and ML (in development)

o An ensemble seismic forecast

o Visualizations to assist end-users understanding
of seismic activity / risks




Model Explorer Module

Why is Model Explorer important, and how can it
accelerate the Class-VI permitting process?

*Allows for quick visualization of the model inputs, output, and
other types of data integration, where multiple sets of technical
information (e.g., site characterization data and modeling input)
can be visualized and evaluated in an integrated fashion.

*Calculates and maps Area of Review (AoR) in real-time in
response to model inputs. Able to display the evolution and
maximum predicted extent of the supercritical CO, plume,
pressure front, and the combined AoR.

*AoR calculation is based on a pressure-front that can be user
defined or determined using the suggested EPA methods.

.S5. DEPARTMENT OF




TASK 8 - Geomechanical Modeling

« Full-physics poromechanical and fault reactivation modeling capabilities are increasingly
mature, but they remain computationally expensive and see limited application in industry.

« Ensembles of physics-based poromechanical simulations to train a rapid ML surrogate and
efficient transfer learning

Geological Model GEOS simulation model

CO2 injector
1.5 Mtpafor 25years

Pressures

CO2 Saturation

Displacements

S. DEPARTMENT OF




Hackathon: EY24 Early win - SMART platform development and outcomes

SMART platform development hackathon was held at PNNL Seattle Campus (July 9-10, 2024)
Platform developers from PNNL, LLNL, and NETL

Objectives:
* Using STRIVE, integrating key SMART modules into the platform.

e Develop workflow recipes and establish coupling between modules within the SMART
platform.

Outcomes:
e Functional SMART platform landing page with integrated SMART modules.
* Established preliminary workflows and module coupling within the platform.

A demo at DOE-FECM meeting on early prototype of SMART platform and key
functionalities.
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How Can SMART Assist CCS Projecis?

« SMART tools can be applied for (a) virtual learning during the pre-injection
()

permitting phase, and (b) ML-assisted operational decision making &
visualization.

 Virtual Learning - During pre-injection permitting phase, rapid exploration and
communication of the impact of data and model uncertainties and “what-if”
scenarios on system evolution after CO, injection.

» Operational Decision Making and Visualization

» Rapid interpretation of geophysical images for improved visualization of subsurface rock and
fluid properties and dynamic model updates.

» Near (real) time optimization of CO2 injection operations using fast predictive models that are
regularly calibrated to observations of pressure, temperature, saturation etc.

User Inputs
Gedlogic Envieonment:  SACROC v ),TTTTTTQ .-".‘-..H

SRR — SESS =4 Al/ML at Work for CCS: Example

M Method: DL v
Ingaction Distribution: 33337

Total Injected Mass (MT): 1 I 35 124

The Virtual Learning Environment (VLE) is an exploratory tool
which uses ML predictions to rapidly inform an end user of how

a given reservoir simulation would likely change in response
to altered inputs.

Timestep: 0 g 963 (328
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Making Better Decisions with ML-Based Tools

Transforming decisions through clear vision of the present and future subsurface.

Decision-makers

Project Engineers
Regulators
High-level Executives

Landowners/Public

Phases

Site/Field Selection
Permitting
Development
Operations

Closure

Rapid predictive analysis
and stakeholder outreach

Better imaging and
subsurface visualization

Questions

© Where is the CO, now?

® How do | move the CO, where
| want it to be?

© Is the project safe?

« Willitleak, and if so, where?

e Will it cause induced
seismicity?

Faster model calibration
and operational forecasting




SMART Presentations at FECM Meeting, Pitisburgh, PA
Program Details (Tuesday, August 6, 2024)

SMART Session 1 — Computational and Visualization Advances

10:30 a.m. - 12:10 a.m.
7 Presentations

SMART Session 2 — Field Applications

1:25 p.m. — 3:25 p.m.
6 Presentations
SMART Session 3 — Applications

4:00 p.m. - 5:20 p.m.
4 Presentations
SMART — Poster Session

5:45 p.m. - 7:45 p.m,
18 Poster Presentations
SMART — Tool Demonstration Session

5:45 p.m. - 7:45 p.m,

11 Tool Demonstrations

U.S. DEPARTMENT OF




SMART Presentations at FECM Meeting, Pitisburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

10:30 a.m. - 10:40 a.m.

SMART Initiative Overview
Hema Siriwardane, National Energy Technology Laboratory

10:40 a.m. - 10:55 a.m.

ML-based Dimension Reduction Strategies
Seyyed Hosseini and Hongsheng Wang, University of Texas Bureau of Economic Geology

10:55a.m. - 11:10 a.m.

Physics-Informed Machine Learning
Alexandre Tartakovsky, University of Illinois Urbana-Champaign

11:10 a.m. - 11:25 a.m.

Transfer Learning for Multi-Physics Problems
Hongkyu Yoon, Sandia National Laboratory

11:25 a.m. - 11:40 a.m.

Model Explorer for Virtual Learning
Maruti Mudunuru and Ashton Kirol, Pacific Northwest National Laboratory

11:40 a.m. - 11:55 a.m.

Induced Seismicity Forecasting with ORION
Kayla Kroll and Chris Sherman, Lawrence Livermore National Laboratory

11:50 a.m. - 12:10 p.m.

SMART Visualization and Decision Support Platform (FWP-1025011)
Maruti Mudunuru, Pacific Northwest National Laboratory, Chris Sherman, Lawrence Livermore
National Laboratory and Patrick Wingo, National Energy Technology Laboratory

U.S. DEPARTMENT OF




SMART Presentations at FECM Meeting, Pitisburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

1:25 p.m. - 1:45 p.m.

Comparison of ML-Based Proxy Modeling Strategies
Jared Schuetter, Battelle Memorial Institute

1:45a.m. - 2:05 a.m.

ML-Based Data Assimilation and History Matching
Masahiro Nagao, Texas A&M University and Akhil Data-Gupta, Texas A&M University

2:05a.m. - 2:25 a.m.

ML-Based Optimization for CO2 Injection
Bailian Chen, Los Alamos National Laboratory

2:25a.m. - 2:45 a.m.

ML-Based Rock Properties and Seismic Volume Enhancement
Athanasios (Athos) Nathanail and Manika Prasad, Colorado School of Mines

2:45a.m. - 3:05 a.m.

ML-Based Fracture and Fault Identification
Youzuo Lin, University of North Carolina

3:05a.m. - 3:25a.m.

ML-Based Rock Physics Modeling and Reservoir Imaging (FWP-FP00014427)
David Alumbaugh, Lawrence Berkeley National Laboratory
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SMART Presentations at FECM Meeting, Pitisburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

4:00 p.m. - 4:20 p.m.

Comparison of ML-Based Proxy Modeling Strategies
Jared Schuetter, Battelle Memorial Institute

4:20 p.m. — 4:40 p.m.

ML-Based Data Assimilation and History Matching
Masahiro Nagao, Texas A&M University and Akhil Data-Gupta, Texas A&M University

4:40 P.m. —5:00 p.m.

Overview of the NRAP/SMART Technoeconomic and Liability Evaluation for Storage
(TALES) Model
David Morgan and Chung-Yan Shih, National Energy Technology Laboratory

5:00 P.m. - 5:20 p.m.

USM - Unified Simulation Module in SMART
Jeff Burghardt and Wenjing Wang, Pacific Northwest National Laboratory
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Concluding Remarks

« SMART motivation, structure,
organization, wiring diagrams Thank you for

, your attention
* Goal = Empower various

stakeholders with advanced
ML and related tools that can
accelerate decision-making

« Outcomes of SMART expected
to be publicly available

 Each Task will present its key
accomplishments from EY23

contact: smartfe@netl.doe.gov
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