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This project was funded by the U.S. Department of Energy, National Energy Technology 
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nor any agency thereof, nor any of their employees, nor the support contractor, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights.  Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof.
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Our Motivation

Growing momentum for 
rapid commercial scale 
deployment of CCS

Develop relevant experience / 
understanding among stakeholders

Facilitate decision-making process during 
project planning, permitting, operations

Traditional analysis involves 
physics-based models 

Data interpretation for characterization

Pre-injection planning and system design

Observational data integration for 
operational decision making

Recent focus on Machine Learning based 
computationally expedient alternatives



VISION: Transform our ability to make better, informed decisions related to the 
subsurface through real-time visualization, forecasting, and virtual learning. 

 SMART- Initiative
  Science-informed Machine Learning to Accelerate Real 

 Time (SMART) Decisions in Subsurface Applications

Improve the ability to consolidate technical knowledge, site-specific 

characterization information, and real-time data in a digestible way.

Enable the optimization of carbon storage reservoirs by creating a capability for 

“real-time” forecasting of carbon storage reservoir behaviour.

Enable improve the ability to understand and communicate expected subsurface 

behaviour during carbon storage operations to non-experts.

MISSION:
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SMART Initiative 

Technical Team

Science-informed Machine Learning to Accelerate Real Time 

(SMART) Decisions in Subsurface Applications



• SMART has developed a conceptual design of the SMART Visualization and 
Decision Support Platform.

• Several modules have been developed (Model Explorer – VLE, USM (Unified 
Simulation Module), STRIVE (SMART Tools Rapid Visualization Environment 
Module), ORION (Induced Seismicity Module), RTFO (Real-time Forecasting and 
Operational Control Module). Developments are continuing.

• Developed a Machine Learning (Transfer Learning) tool to forecast CO2 plume 
saturation and pressure under operating conditions different from those used 
to train an earlier ML model.

• Developed a Machine Learning (ML) based algorithm for fault/fracture 
identification from FMI logs and passive seismic signatures to further refine the 
geomodel.

• Developed an ML-based data-assimilation/history matching frameworks for 
calibrating a site-specific dynamic model to pressure, saturation, temperature 
data.

• Developed Model Explorer tool to rapidly explore various modeled scenarios 
and impact of heterogeneity and/or uncertainty using ML-based fast predictive 
models.

• SMART-NRAP: Developed the Operational Forecasting of Induced Seismicity 
toolkit “ORION” (ORION), an open-source, observation-based ensemble 
forecasting toolkit, which is geared towards helping operators understand 
potential seismic hazards at a site.

• Developed a tool based on integrated computer vision and deep learning 
workflows for automating image log analysis, helping to rapidly and precisely 
detect fractures and baffles in subsurface formations.

SMART Initiative

Current Progress
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Data Assimilation and History 
Matching with ML

Virtual Learning 
Environment 
Module (VLE)

FMI-based Fracture, Bedding, 

and Baffles Identification using 

ML (FBBIML) IBDP SNL Model

(NRAP/SMART)
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TASK 2: Wiring Diagram –Virtual Learning for Permitting

• Regulatory 

agencies

• Site operators

• Public



Highlight # 2: Site Characterization – 
Seismicity Detection →

Site Characterization

Facies 
changes

Faults & 
Fractures

Seismic 
history

ML detectionConventional detection

ML based method 
• Uses trained models (detects ~40 times more 

events)

• Remove bias and noise

• Fast

Tool: Model Explorer 

Conventional methods
• Using catalogs /traffic light

• Biased and hindered by noise

• Slow 

Highlight # 1: AoR & 
Corrective Action - 

Dynamic Simulation

Tool: SmartSeis

 

TASK 2: Example tools



Task 3, Advanced Learning and Computational 
Approaches
Activities

• 1: Software Quality Assurance (QA)
• Ensure that any software in Phase 2 meets a set of agreed upon quality and reliability standards, 

allowing those tools to satisfy any requirements dictated by the application in which they are being 
used

•  2: Cross-activity Integration
◦ Identify overlaps in techniques and methodologies developed during Phase 1 and 

adapting them for ease of applicability by 2A and 2C teams

• 3: Advanced Machine Learning Methods
◦ Focus on AI/ML methods that can make SMART transformational ML models and 

overcome challenges identified in Phase I

• 4: Advanced Computational Approaches 
◦ Focus on advanced methods to enhance performance (accuracy, efficiency, 

privacy) that could not be achieved by a single ML method
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Task 3, Advanced Learning and Computational 
Approaches
Accomplishments

• Advanced ML Methods & Advanced Computational Approaches

◦ Topic Area: Fast and Flexible Solutions for Fluid Flow Prediction
―Built flexible models that leverage advanced approaches (e.g., Neural Operators) to handle the 

dynamic evolution of pressure, saturation, and stress and can serve as the basis to expand to solve 
other field prediction problems
▪ DeepONet
▪ Fourier Neural Operator
▪ Graph Neural Operator
▪ PICKLE
▪ HGGNN
▪ Wafer Scale Engine Field Equation Application Programming Interface

― These models also allow for the incorporation of physics and scientific knowledge to increase the 
user confidence and understanding of the model reasoning processes 

―Models tested on the clastic shelf dataset, with some models also being tested on IBDP

10



TASK 4: Wiring Diagram –Data Organization and Imaging
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Iterative 
Stochastic 
Reservoir 

Simulation

Fast Reservoir/ 
Modeling

Initial Static and Dynamic 
Geo Models Multiple realizations of 

Reservoir Properties (f, 
k, etc.)

Multiple Simulations of 
Predicted Reservoir 

Pressure, Sat, Stress etc. 
everywhere in model 

(Stochastic) 
Geophysical 

Property  
Simulation

Petrophys - 
Rock Prop  

Relationships

Multiple Realizations of Geophysical 
Properties (Anisotropic seismic P and S 

Velocities, etc.) everywhere in model 

N Simulations of Predicted 
Reservoir Pressure, Sat, etc. 

extracted at measurement 
locations/ sensing area Geophysical 

Modeling
Synthetic 
Training  Data

Multiple Simulations of 
Geophysical Data 
(Passive and/or Active 
Seismic, etc.) at sensor 
locations
 

Random Sampling of 
Training data ,  multiple 

U-Net Creation, …

Estimates of Geophysical Properties with Uncertainty

Laboratory Flow 
Imaging / Rel.  
Permeability 

Upscaling

Core and Log 
Petrophysical 

Analysis

Task 4 - Reservoir Property Imaging Workflow for Any Type of 
Geophysical Data

ML Driven 
Downscaling

Estimates of  
Reservoir Props  

(CO2 Sat., Pressure, 
Stress, etc.) & 

Uncertainty

ML Driven 
Conversion

Provided by TASK 5 via Universal Data and Mod Platform

Minimally processed 
Geophysical Data

Convolution Neural Net
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Task 4 – Fault/Fracture Imaging
Passive Seismic 

Waveforms
Signal Arrival 

Times
Seismic Event 

Catalog
Fault & Fracture

TL-Picker DL-TT-Locator ML-Fault-Mapper

Event Location
Uncertainty

Fault Planes

Arrival 
Times

ORNL developed a 
workflow with three AI 
applications to improve 
the speed and reduce the 
cost of fault and fracture 
imaging for carbon 
storage sites. 

ORNL
Workflow

Continuous 
passive 

seismic data

MS event 
detection

ML1 ML2 Synthetic data 
augmentation

Quality 
control

ML3 Event 
catalog

ML4 ML5 Faults & 
Fractures

ML2: Waveform generative model 
for catalog augmentation ML4: Source location model

ML5 output: Event clustering 
and fault plane fitting

ML1 output: newly 
detected event

SNL 
Workflow



TASK 5: Wiring Diagram –Storage Reservoir Modeling
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Task 5 –Dynamic Storage Reservoir Modeling

Vision: Provide real-time modeling, data assimilation and forecasting to support:

• Field management -- to maximize storage while minimizing pressure buildup

• Induced seismicity risk assessment Carbon Storage Simulation 
Workflows Today:
• Strong physical basis
• Decision-driven
• Ensemble-based

• Human-labor intensive
• Slow and non-interactive
• Heuristic optimization

Figure: Physics-based simulation of CO2 saturation plume at the end of 3 years injection (left)   

at the Illinois Basin-Decatur Project (IBDP) site with a geologic model (right)

[https://edx.netl.doe.gov/dataset/illinois-state-geological-survey-isgs-illinois-basin-decatur-project-ibdp-geological-models]

SMART Vision:
• Strong physical basis
• Decision-driven
• Ensemble-based

• Human-labor efficient
• Highly interactive
• Automated workflows
• Rapid data assimilation
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Task 5 –Dynamic Storage Reservoir Modeling

Key Idea: Use ML models, trained on physical simulations, to create a rapid surrogate

• Learns physical-basis embedded in full-physics models

• Is exposed to a broad array of possible surface configurations (porosity, permeability, baffles)

• Achieve prediction accuracy, training efficiency (with 1.73 M cells of IBDP model), and 

portability of trained models in an interactive user interface (i.e., unified simulation module)

Figure: Illinois-Basin Decatur Test. Comparison of physic-based model 

(gray) with four ML models (lines), showing predicted saturation plume 

dimensions (plan view) on test case for IBDP.

Porosity Permeability (md)



TASK 6: Wiring Diagram – Decision Support & Visualization



ML-based Rapid 
Prediction

Virtual Learning

ML-based Real-Time 
Forecasting

“Advanced Control Room”

Real-Time Visualization
“CT” for the Subsurface

SMART Decision 

Support Platform

SMART Functionalities SMART Applications

Injection Operational Control

Virtual Learning to Support Permitting

SMART - Visualization and Decision Support 
Platform 



Operational FoRecastIng Of INduced Seismicity (ORION)
SMART AND NRAP

• ORION serves as the Induced Seismicity 
Module for Platform

• Key inputs:
◦ Observed seismic activity

◦ Pressure model

◦ Geologic model

• Outputs:
◦ Independent seismic forecast models that are 

based off different physical assumptions, 
statistics, and ML (in development)

◦ An ensemble seismic forecast

◦ Visualizations to assist end-users understanding 
of seismic activity / risks



20

Model Explorer Module

Why is Model Explorer important, and how can it 
accelerate the Class-VI permitting process?

•Allows for quick visualization of the model inputs, output, and 
other types of data integration, where multiple sets of technical 
information (e.g., site characterization data and modeling input) 
can be visualized and evaluated in an integrated fashion.

•Calculates and maps Area of Review (AoR) in real-time in 
response to model inputs. Able to display the evolution and 
maximum predicted extent of the supercritical CO2 plume, 
pressure front, and the combined AoR.

•AoR calculation is based on a pressure-front that can be user 
defined or determined using the suggested EPA methods.



GEOS: A Multiphysics, High-performance, Open-source Simulator for Geological Carbon Storage
Isaac Jua, Hamdi Tchelepia, Herve Grossb, Nicola Castellettoc  and the GEOS Developer Team

aDepartment of Energy Science and Engineering, Stanford University
bTotalEnergies EP Research and Technology USA

cAtmospheric, Earth, and Energy Division, Lawrence Livermore National  Laboratory

D E P A R T M E N T  O F  E N E R G Y  S C I E N C E  A N D  E N G I N E E R I N G ,  S T A N F O R D  U N I V E R S I T Y

More accurate predictions of rock-fluid interactions

Traditional oil and gas simulators do not account for some interactions that 
are critical to CCS operations, such as the geomechanical deformations 

caused by CO2 injection in the pore space. Multiphysics simulation is 

necessary for an accurate representation of these interactions.

Better quantification of geomechanical risks

Injecting CO2 can increase geomechanical risks such fault activation, plastic 

deformations, or micro-seismicity. Multiphysics simulations are required to 
obtain an accurate quantification of these risks, even far from the injection 

sites and long after operations have stopped.

Multiphysics calls for advanced numerical methods

Geological models of CCS operations include the target storage formation, 

but also its overburden and underburden. To simulate such extensive 

models, advanced numerical methods and HPC-portability are essential.

Impact: Providing open-source tool to aid safe permitting and efficient 

operation of geologic carbon storage projects

Performance: Keeping pace with ongoing revolution in high- 
performance computing hardware

Fidelity: Enriching physics used in practical simulations, allowing 

complex processes to be handled seamlessly

Decision-Making: Learning to combine increasingly large data 

acquisitions with smart simulation to inform rapid decision making

FC–MAELSTROM

Conclusion & Future work

Collaboration

Number of elements 4,177,966

Number of nodes 1,930,023

Degrees of Freedom 16,292,970

Sea Floor

Why is Multiphysics Simulation Important?

Open-source for collaboration and transparency

Ready for Industrial-scale Simulations: a North Sea Site

High-performance: portability and scalability

HPC effort for CCS should expand 

beyond traditional reservoir simulation 
with an emphasis on subsurface pressure and saturation 
distributions to address the effects on regional hydrodynamics, 
pressure perturbations, modified stress fields, and deformation
at the reservoir and basin scales.

June

2019

September

2017

10km

GEOS is freely available on GitHub (https://www.geos.dev/)

GEOS is an open platform for R&D in physics, numerics, and HPC.

CO2 injector

1.5 Mtpa for 25 years

Pressures

CO2 Saturation

Displacements

GEOS is designed to 
leverage current and 

next-generation HPC 

architectures

GEOS can simulate basin-scale formation with complex geological structures

GEOS produces accurate predictions with strong numerical scalability

Cores DoF/core Simulation Time

32 504.3 k 5h 8min

64 253.1 k 2h 55min

128 126.6 k 1h 58 min

1,024 15.8 k 34 min

Transparent code & qualification processes for regulators

GEOS is a tool that can be used for Class VI permit applications.

Pelican Renewables, LLC 
submitted their Class VI 
Permit Application to EPA 
Region 9 for implementing 
CCS in the California Delta 
adopting GEOS as the primary 
dynamic modeling software 

Background

Motivations for a Next-generation Simulator

Carbon Capture and Storage (CCS) is a technology that can lead to 
significant reductions in global CO2 emissions at scale. The process 
involves capturing CO2 from emission points such as power plants and 
industrial facilities, separating it, and compressing it. The compressed CO2 
is injected in geologic sequestration sites. To ensure safe and efficient 
operations of CO2 geological storage projects, numerical simulations are 
necessary. These multiphysics simulations require the tight coupling of 
compositional multiphase flow, transport, and rock deformation.

Establish one or more 

internationally recognized CO2 

storage open-source software
as done with climate models. Such open-source software
would enable transparency, openness and wider collaboration.”

Underburden down to basement

CO2 saturation

CO2 injection site: deep saline aquifer

Overburden

6 km

57.1 km

21.7 km

Geological Model GEOS simulation model

65 
contributors

4,000+ 

updates 
since 2018

open-source
since

2020
30+ 

peer-reviewed 

publications
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TASK 8 – Geomechanical Modeling

• Full-physics poromechanical and fault reactivation modeling capabilities are increasingly 

mature, but they remain computationally expensive and see limited application in industry.

Figure: GEOS poromechanical simulation of the Northern Lights injection project [courtesy TotalEnergies].

• Ensembles of physics-based poromechanical simulations to train a rapid ML surrogate and 
efficient transfer learning



Hackathon: EY24 Early win – SMART platform development and outcomes

• SMART platform development hackathon was held at PNNL Seattle Campus (July 9-10, 2024)

• Platform developers from PNNL, LLNL, and NETL

• Objectives:

• Using STRIVE, integrating key SMART modules into the platform.

• Develop workflow recipes and establish coupling between modules within the SMART 
platform.

• Outcomes:

• Functional SMART platform landing page with integrated SMART modules.

• Established preliminary workflows and module coupling within the platform.

• A demo at DOE-FECM meeting on early prototype of SMART platform and key 
functionalities.
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• SMART tools can be applied for (a) virtual learning during the pre-injection 
permitting phase, and (b) ML-assisted operational decision making & 
visualization.

• Virtual Learning - During pre-injection permitting phase, rapid exploration and 
communication of the impact of data and model uncertainties and “what-if” 
scenarios on system evolution after CO2 injection.

• Operational Decision Making and Visualization

• Rapid interpretation of geophysical images for improved visualization of subsurface rock and 

fluid properties and dynamic model updates.

• Near (real) time optimization of CO2 injection operations using fast predictive models that are 

regularly calibrated to observations of pressure, temperature, saturation etc.

The Virtual Learning Environment (VLE) is an exploratory tool 
which uses ML predictions to rapidly inform an end user of how 
a given reservoir simulation would likely change in response 
to altered inputs.

AI/ML at Work for CCS: Example

How Can SMART Assist CCS Projects?
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Making Better Decisions with ML-Based Tools

Transforming decisions through clear vision of the present and future subsurface.

Phases

Site/Field Selection

Permitting

Development

Operations

Closure

Questions

 Where is the CO2 now?

 How do I move the CO2 where 
I want it to be?

 Is the project safe? 

• Will it leak, and if so, where?

• Will it cause induced 
seismicity?

Decision-makers

Project Engineers

Regulators

High-level Executives

Landowners/Public

Phase 2

Rapid predictive analysis 
and stakeholder outreach

Better imaging and 
subsurface visualization

Faster model calibration 
and operational forecasting
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SMART Presentations at FECM Meeting, Pittsburgh, PA
Program Details  (Tuesday, August 6, 2024)

10:30 a.m. - 12:10 a.m.

SMART Session 1 –  Computational and Visualization Advances

7 Presentations

1:25 p.m. – 3:25 p.m.

SMART Session 2 –  Field Applications

6 Presentations

4:00 p.m. - 5:20 p.m.

SMART Session 3 – Applications

4 Presentations

5:45 p.m. - 7:45 p.m.

SMART – Poster Session

18 Poster Presentations

5:45 p.m. - 7:45 p.m.

SMART – Tool Demonstration Session

11 Tool Demonstrations
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SMART Presentations at FECM Meeting, Pittsburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

10:30 a.m. - 10:40 a.m.
SMART Initiative Overview

Hema Siriwardane, National Energy Technology Laboratory

10:40 a.m. - 10:55 a.m.
ML-based Dimension Reduction Strategies

Seyyed Hosseini and Hongsheng Wang, University of Texas Bureau of Economic Geology

10:55 a.m. - 11:10 a.m.
Physics-Informed Machine Learning

Alexandre Tartakovsky, University of Illinois Urbana-Champaign

11:10 a.m. - 11:25 a.m.
Transfer Learning for Multi-Physics Problems

Hongkyu Yoon, Sandia National Laboratory

11:25 a.m. - 11:40 a.m.
Model Explorer for Virtual Learning

Maruti Mudunuru and Ashton Kirol, Pacific Northwest National Laboratory

11:40 a.m. - 11:55 a.m.
Induced Seismicity Forecasting with ORION

Kayla Kroll and Chris Sherman, Lawrence Livermore National Laboratory

11:50 a.m. - 12:10 p.m.
SMART Visualization and Decision Support Platform (FWP-1025011)

Maruti Mudunuru, Pacific Northwest National Laboratory, Chris Sherman, Lawrence Livermore 

National Laboratory and Patrick Wingo, National Energy Technology Laboratory
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SMART Presentations at FECM Meeting, Pittsburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

1:25 p.m. - 1:45 p.m.
Comparison of ML-Based Proxy Modeling Strategies

Jared Schuetter, Battelle Memorial Institute

1:45 a.m. - 2:05 a.m.
ML-Based Data Assimilation and History Matching

Masahiro Nagao, Texas A&M University and Akhil Data-Gupta, Texas A&M University

2:05 a.m. - 2:25 a.m.
ML-Based Optimization for CO2 Injection

Bailian Chen, Los Alamos National Laboratory

2:25 a.m. - 2:45 a.m.
ML-Based Rock Properties and Seismic Volume Enhancement

Athanasios (Athos) Nathanail and Manika Prasad, Colorado School of Mines

2:45 a.m. - 3:05 a.m.
ML-Based Fracture and Fault Identification

Youzuo Lin, University of North Carolina

3:05 a.m. - 3:25 a.m.
ML-Based Rock Physics Modeling and Reservoir Imaging (FWP-FP00014427)

David Alumbaugh, Lawrence Berkeley National Laboratory
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SMART Presentations at FECM Meeting, Pittsburgh, PA

2024 Program Details (Tuesday, August 6, 2024)

4:00 p.m. - 4:20 p.m.
Comparison of ML-Based Proxy Modeling Strategies

Jared Schuetter, Battelle Memorial Institute

4:20 p.m. – 4:40 p.m.
ML-Based Data Assimilation and History Matching

Masahiro Nagao, Texas A&M University and Akhil Data-Gupta, Texas A&M University

4:40 P.m. – 5:00 p.m.

Overview of the NRAP/SMART Technoeconomic and Liability Evaluation for Storage 

(TALES) Model

David Morgan and Chung-Yan Shih, National Energy Technology Laboratory

5:00 P.m. - 5:20 p.m.
USM - Unified Simulation Module in SMART

Jeff Burghardt and Wenjing Wang, Pacific Northwest National Laboratory
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Concluding Remarks

• SMART motivation, structure, 

organization, wiring diagrams

• Goal  Empower various 

stakeholders with advanced 

ML and related tools that can 

accelerate decision-making

• Outcomes of SMART expected 

to be publicly available

• Each Task will present its key 

accomplishments from EY23

Thank you for 
your attention

contact: smartfe@netl.doe.gov
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