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• For some research problems, SMART has generated 
multiple candidate solutions

• These solutions typically use different code bases, are 
developed by different organizations, and in some 
cases are built from different training and validation 
datasets

• To evaluate the strengths and weaknesses of the 
solutions, it is necessary to compare their performance 
on the same datasets using the same metrics

• The goal of the subtask described in this presentation
was to compare several machine learning (ML) based 
reservoir proxy models for the Illinois Basin - Decatur 
Project (IBDP)

• This talk will describe what was done and share lessons 
learned from that activity

Background and Objectives
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https://jasneko.com/



• Our goal was to make the analysis understandable, repeatable, and flexible
• Common strategies (see below) were used to try to ensure these goals were met

General Considerations Comparing Models
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Repeatable & FlexibleUnderstandable

Create APIs For 
Model Predictions

Use A Common 
Comparison Script

Use Modular Code

Two-Way Communication 
Between Teams
Use Only The Data 
That Are Needed

Use Multiple Metrics



• The Comparison: Compare four forward models built on the same train and test sets

IBDP Simulation Model
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IBDP Site and 
Reservoir Model Details

Characteristic Value

Model Software Eclipse

Geologic Inputs Porosity/perm realizations 
from a spatial model

Reservoir Size 
and Shape

Tartan Grid (126x, 125y, 110z)
z = 1 is the surface

Timepoints 50 (monthly)
Injection Well 
Location (x = 54, y = 76)

Injection Well 
Packer-Separated 
Perforation Zones

Upper: z = 74
Middle: z = 76-81
Lower: z = 83-86

Monitoring Well 
Location (x = 57, y = 68)

Monitoring Well 
Sensor Depths z = 29, 43, 62, 79, 84, 91

Example IBDP realization (right column) 
compared to the IBDP reference model 
(left column).



• The Comparison: Compare four forward models built on the same train and test sets

Simulation Data for Proxy Model Training & Evaluation
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Simulation Output = Spatiotemporal Pressure & 
Saturation

Pressure Saturation

Horizontal 
Slice at the 

Lower 
Injection 

Zone
(t = 30)

Vertical Slice 
Through the 

Injection Well
(t = 30)

100 IBDP Eclipse simulation runs, differing 
only in terms of the geology 
(porosity/permeability distribution, baffle 
locations, and transmissivity modifiers)

90 runs used 
to train each 
of the models

10 runs used to 
evaluate each 
of the models

20 runs used different transmissivity modifiers.



• The Comparison: Compare four forward models built on the same train and test sets

Proxy Models and What is Needed To Compare Them
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Candidate Models
Natl. Energy Technology 

Laboratory
• Long short-term memory (LSTM)
• Pressure model:
 Fully connected MLP layers

• Saturation model:
 Fully connected MLP layers

• Both models predict on cropped 
domain [32:96, 32:96, 29:84]

Sandia Natl. Laboratory
• Improved neural operator (iNO)
• Encoder/decoder used to build 

model in a latent space
• Predictions can be made at any 

time or location within domain

U Illinois Urbana-Champaign
• Karhunen-Loeve Deep Neural 

Network (KL-DNN)
• Dimension reduction through KL 

expansion, modeling in that 
space

• Pressure predictions: Full domain
• Saturation predictions: Cropped 

domain [31:70, 51:94, 1:94]

U Texas - Bureau of Econ. Geology
• U-Net
• Pressure model:
 Fully connected MLP layers
 Prediction on full domain

• Saturation model:
 Convolutional layers
 Prediction on cropped domain 

[27:75, 49:97, 1:97]

• Desired Comparisons:
◦ Pressure prediction accuracy 

across the model domain
◦ Saturation prediction accuracy 

across the active subset of the 
reservoir 
[x = 31:70, y = 51:94, z = 1:94]

◦ Agreement in pressure and 
saturation plume shape and 
magnitudes

◦ Agreement in pressure and 
saturation plume extent, especially 
as it relates to Area of Review 
calculation

◦ Training and inference speed, 
computational burden, hardware 
requirements, etc.



• Comparison Strategy: Use Only The Data 
That Are Needed
• “Truth Data” for each of 10 test cases

•  IBDP simulated pressure over full domain
•  IBDP simulated saturation over sub-domain

• “Prediction Data” for each model and test 
case

•  Predicted pressure over full domain
•  Predicted saturation over sub-domain

• “Computational Data” for each model and 
sub-model (pressure, saturation)

•  Training hardware and average CPU/GPU 
 training time using 90 training cases

•  Inference hardware and average CPU/GPU 
 inference time over the 10 test cases

How We Used the Comparison Strategies
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Pressure Domain

Saturation
Domain

Truth

Pressure Domain

Saturation
Domain

Prediction

 Pressure accuracy 
 Pressure plume shape
 Pressure plume extent

 Saturation accuracy 
 Saturation plume shape
 Saturation plume extent

 Training/Inference Speed
 Computational burden
 Hardware requirements



• Comparison Strategies: 
Create APIs For Model Predictions, 
Two-Way Communication Between Teams
• Worked with the modeling teams to 

create an API for prediction data 
• Data were provided in HDF-5 file format (.h5) 

with the nested structure shown below

How We Used the Comparison Strategies
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Case 
Number

Output 
Type

Data 
Array

String of the form “Run XX”, 
where XX is the run number

“Permeability”, “Porosity”, “Pressure”, 
“Saturation”, “Production” (if applicable)

NumPy array of the form [x, y, z, t], 
where (x, y, z) is the cell location in x, 
y, and depth (z), and t is the 
timepoint

Example code to generate a 2D horizontal slice 
(pressure_slice_12) of the predicted pressure volume at 
depth = 93 and time = Month 12 for Run 10.

import h5py
f = h5py.File(path_to_h5_file, 'r')
pressure_data = f['Run 10']['Pressure']
pressure_slice_12 = pressure_data[,,92,11]



• Comparison Strategy: Use Multiple Metrics
• These were all regression models producing outputs at each cell in the reservoir
• Standard metrics are root mean squared error (RMSE) and mean absolute error (MAE)
• In this case, we also want to be able to understand how residuals change across the 

volume, so we used weighted versions of these metrics:

How We Used the Comparison Strategies
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑𝑖𝑖∈𝑆𝑆 𝑤𝑤𝑖𝑖2 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

𝑆𝑆

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑𝑖𝑖∈𝑆𝑆 𝑤𝑤𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

𝑆𝑆

Weighting Scheme Weights 𝒘𝒘𝒊𝒊 Set 𝑺𝑺

Classical (uniform) weighting 𝑤𝑤𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑆𝑆 𝑆𝑆 = {𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}

Non-zero (NZ) weighting 𝑤𝑤𝑖𝑖 = 1 ∀𝑖𝑖 ∈ 𝑆𝑆 𝑆𝑆 = {𝑖𝑖: 𝑦𝑦𝑖𝑖 ≠ 0}

Rate of Change (RoC) weighting
𝑤𝑤𝑖𝑖 = 𝑆𝑆 �

𝑦𝑦𝑖𝑖,𝑡𝑡+1 − 𝑦𝑦𝑖𝑖,𝑡𝑡
∑𝑗𝑗∈𝑆𝑆 𝑦𝑦𝑗𝑗,𝑡𝑡+1 − 𝑦𝑦𝑗𝑗,𝑡𝑡

𝑦𝑦𝑗𝑗,𝑡𝑡 is the value in cell 𝑗𝑗 at time 𝑡𝑡
𝑆𝑆 = {𝑖𝑖: 𝑦𝑦𝑖𝑖 ≠ 0}

Weighted RMSE

Weighted MAE



• Comparison Strategies: Use a Common Comparison Script, Use Modular Code
• The script works from a dictionary of files
• After specifying their names, they could all be loaded and analyzed the 

same way because of the standard data format that we agreed upon

How We Used the Comparison Strategies
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# Specify Data Locations
truthFile = dataDir + 'Truth.h5'
reservoirFile = dataDir + 'ibdp.h5'
modelResultFiles = {'UTBEG': dataDir + 'ut_beg_data.h5',

'SNL': dataDir + 'snl_results.h5',
'UIUC': dataDir + 'uiuc_data_mean.hdf5',
'NETL': dataDir + 'netl_ibdp_lstm.h5'}

resultFile = projDir + 'Comparison_Results.h5’

# Load Datasets
reservoir = h5py.File(reservoirFile, 'r’)
truth = h5py.File(truthFile, 'r')
prediction = dict()
for k in modelResultFiles.keys():

prediction[k] = h5py.File(modelResultFiles[k], 'r')

“truth” and “prediction” go into a loop 
through the models where comparisons are 
made using a SMARTComparer class on 
appropriate sub-volumes of the reservoir

New models can be incorporated by 
making a single change to the 
modelResultFiles dictionary



• Comparison Strategy: Use a Common Comparison Script
• Scripts are in a Jupyter notebook to more easily re-run the comparison in the future
• Text could be embedded here as well, if needed, to produce an interactive report

How We Used the Comparison Strategies
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• Overall Model Accuracy
• Global metrics calculated across all 10 test runs, 50 timesteps, and 1.7M grid cells
• UIUC’s KL-DNN is the top performer across the board for pressure prediction
• UTBEG’s U-Net is the best model for saturation prediction

• Note: These results can be misleading since most of the reservoir has zero saturation and small 
pressure change for most timesteps… RoC weighting was meant to account for this.

Comparison Results – Macro Level
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Response Model RMSE RMSE_NZ RMSE_RoC MAE MAE_NZ MAE_RoC

Pressure

NETL 5.602 5.602 76.228 4.133 4.133 13.475
SNL 1.360 1.360 12.619 0.822 0.822 1.351

UIUC 1.022 1.022 5.019 0.537 0.537 0.743
UTBEG 1.560 1.560 19.803 0.895 0.895 1.675

Saturation

NETL 0.033 0.122 0.267 0.011 0.094 0.101
SNL 0.015 0.079 0.222 0.002 0.053 0.072

UIUC 0.015 0.077 0.220 0.002 0.052 0.070
UTBEG 0.012 0.064 0.183 0.002 0.041 0.056



• Pressure and Saturation Accuracy by Run
• Generally consistent performance with more inter-model variability than intra-model variability
• Larger errors associated with Runs 90 and 100, which had different transmissivity modifiers

Comparison Results – By Run
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Pressure Saturation

RMSE

RMSERoC

MAENZ

RMSENZ

MAE

MAERoC

RMSE

RMSERoC

MAENZ

RMSENZ

MAE

MAERoC

UTBEG
UIUC

SNL
NETL

UTBEG
UIUC

SNL
NETL

UTBEG
UIUC

SNL
NETL

UTBEG
UIUC

SNL
NETL

UTBEG
UIUC

SNL
NETL

UTBEG
UIUC

SNL
NETL



• Pressure and Saturation Accuracy by Timestep 
• Errors increase through the injection period, then tail off around the end of injection (month 36)
• Spikes in error around months 16, 28, 36, accentuated by the rate of change (RoC) metrics

Comparison Results – Pressure Over Time
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Pressure MAE 
(Zoomed)

RMSE

RMSERoC

MAENZ

RMSENZ

MAE

MAERoC

Pressure Saturation

RMSE

RMSERoC

MAENZ

RMSENZ

MAE

MAERoC

NETL
SNL
UIUC
UTBEG



• Contour plots were 
used to visualize the 
pressure and saturation 
plumes at end of 
injection (average 
value across z-dim)

• The best plumes 
come from the same 
overall best models 
• Pressure: UIUC
• Saturation: UTBEG

• Note that saturation
was only compared
on the sub-volume
of mostly active cells

Comparison Results – Plume Shape
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SNL UTBEG

UIUCNETL

Saturation Truth

SNL UTBEG

UIUCNETL

Pressure Truth



• Plume extent was defined by 
a critical threshold
• Pressure ≥ 96 psi change
• Saturation ≥ 0.01 (1%)

• Intersection-over-union (IOU) 
metric was used to measure 
agreement with ground truth

Comparison Results – Plume Extent
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Pressure, Run 10 Saturation, Run 10

Pressure, Run 100 Saturation, Run 100
Pressure IOU Saturation IOU

NETL SNL UIUC UTBEG NETL SNL UIUC UTBEG
Run 10 0.570 0.832 0.924 0.853 Run 10 0.882 0.855 0.855 0.923
Run 20 0.591 0.744 0.947 0.814 Run 20 0.898 0.892 0.902 0.928
Run 30 0.666 0.855 0.891 0.713 Run 30 0.901 0.865 0.860 0.915
Run 40 0.607 0.727 0.938 0.786 Run 40 0.889 0.833 0.836 0.908
Run 50 0.558 0.784 0.860 0.852 Run 50 0.798 0.768 0.778 0.922
Run 60 0.566 0.785 0.917 0.843 Run 60 0.918 0.881 0.886 0.923
Run 70 0.676 0.836 0.877 0.713 Run 70 0.860 0.820 0.820 0.907
Run 80 0.543 0.711 0.881 0.851 Run 80 0.880 0.871 0.879 0.888
Run 90 0.193 0.000 0.475 0.700 Run 90 0.347 0.815 0.818 0.800

Run 100 0.116 0.000 0.792 0.697 Run 100 0.333 0.817 0.833 0.897

Truth

NETL

SNL

UIUC

UTBEG



• Teams provided run times 
and hardware used, but 
configurations were quite 
different

• Opted to use floating point 
operations per second (FLOPS) 
to convert all run times to the 
same hardware

Comparison Results – Computational Burden
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Model NETL SNL UIUC UT-BEG

Training - 
Pressure

CPU/GPU 
Time

Not provided
149 min 

(1500 epochs)
~5 hours ~25 hrs

Hardware CPU 1x Quadro RTX 8000
1x NVIDIA
RTX A5000

2x NVIDIA GeForce 
RTX 3090

Training - 
Saturation

CPU/GPU 
Time

Not provided
47 min 

(1000 epochs)
~5 hours ~14 hrs

Hardware CPU 1x Quadro RTX 6000
1x NVIDIA
RTX A5000

2x NVIDIA GeForce 
RTX 3090

Inference - 
Pressure

CPU/GPU 
Time

2.403s (10 cases 
with 50 steps)

46.22s (including 
data transfer), 
1s model eval

~2 seconds for all 
test cases

12.593s per 
realization

Hardware 1x NVIDIA P100 1x Quadro RTX 8000
1x NVIDIA
RTX A5000

2x NVIDIA GeForce 
RTX 3090

Inference - 
Saturation

CPU/GPU 
Time

1.989s (10 cases 
with 50 steps)

1.5s (incl. data 
transfer), 0.653s 

model eval

~2 seconds for all 
test cases

1.533s per 
realization

Hardware 1x NVIDIA P100 1x Quadro RTX 6000
1x NVIDIA
RTX A5000

2x NVIDIA GeForce 
RTX 3090

Hardware
FLOPS 

(FP32*)
NVIDIA P100 9.3
Quadro RTX 6000 16.3
Quadro RTX 8000 16.3
NVIDIA RTX A5000 27.8
GeForce RTX 3090 35.6
NVIDIA H100 SXM 67
* Single-precision floating point

Mode Response NETL SNL UIUC UT-BEG
Training Time

(Minutes)
Pressure --- 36.249 124.478 1594.030

Saturation --- 11.434 124.478 892.657
Inference Time

(Seconds)
Pressure 0.033 0.243 0.083 13.382

Saturation 0.028 0.159 0.083 1.629



• This comparison activity was mostly painless because:
• There was planning and communication about how data would be delivered
• The models were uniform (i.e., same training set, conditions, and output grid… mostly)
• Ground truth was simulated, so we avoided a lot of complication found in real site 

characterization or field operation datasets (e.g., missing, inaccurate, or inconsistent data)

• For comparison tasks like this, it is crucial to consider how different approaches will be 
compared before planning the task where they are implemented

• Thanks to all the modeling teams for fulfilling my many 
requests for information and working hard to provide
results in the formats needed to do the comparisons!
• NETL: Chung Shih, Paul Holcomb
• SNL: Hongkyu Yoon, Meen Kadeethum
• UIUC: Alex Tartakovsky, Christian Munoz Oro
• UTBEG: Seyyed Hosseini, Hongsheng Wang

Concluding Remarks & Lessons Learned
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VISIT US AT:  www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

@NETL_DOE

@NETL_DOE

CONTACT:

NETL
RESOURCES

Jared Schuetter
schuetterj@battelle.org

mailto:schuetterj@battelle.org
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