

SMART-Phase 2

Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

ML-based Data Assimilation and History Matching: Application to the IBDP CCS Project

Masahiro Nagao, Takuto Sakai, Akhil Datta-Gupta Texas A&M University

01 10 01 1 01 10 01001 10 100001 10 10

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Masahiro Nagao, Takuto Sakai, Akhil Datta-Gupta

Petroleum Engineering

Texas A&M University, College Station, TX 77843

Development and application of ML-assisted tools and workflows for **field-**

scale application and validation of geologic carbon storage

- Rapid forecasting of CO₂ plume evolution and field pressure constrained to observed data while accounting for data sparsity and geologic uncertainties
- Current Challenges
 - Expensive forward simulation: multiphase, compositional and coupled flow
 - Repeated simulations for model calibration and uncertainty analysis
 - Traditional history matching is time consuming -- often takes weeks/months and is not amenable to real time decision-making

Proposed Workflow: Outline of Steps

• Dimensionality and computational time reduction for training data generation

- Diffusive time of flight (DTOF) map representing pressure front propagation
- Neural Network Training
 - Variational autoencoder (VAE) for DTOF image compression using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data
- Prediction of CO₂ plume images
 - Estimate DTOF image from monitoring data (pressure and temperature at the injection and monitoring wells)
 - Predict CO₂ plume images

Ē

Data Dimensionality and Computational Time Reduction: Single DTOF Map Representing Pressure Propagation

Eikonal solution takes only a few seconds for multi-million cell models

Proposed Workflow: Outline of Steps

- Dimensionality and computational time reduction for training data generation
 - Diffusive time of flight (DTOF) map representing pressure front propagation
- Neural Network Training
 - Variational autoencoder (VAE) for DTOF image compression using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data
- Prediction of CO₂ plume images
 - Estimate DTOF image from monitoring data (pressure and temperature at the injection and monitoring wells)
 - Predict CO₂ plume images

Neural Network Training

Ē

8

Proposed Workflow: Outline of Steps

- Dimensionality and computational time reduction for training data generation
 - Diffusive time of flight (DTOF) map representing pressure front propagation
- Neural Network Training
 - Variational autoencoder (VAE) for DTOF image compression using latent variables
 - Regression model to estimate autoencoder latent variables based on the monitoring data

• Prediction of CO₂ plume images

- Estimate DTOF image from monitoring data (pressure and temperature at the injection and monitoring wells)
- Predict CO₂ plume images

Estimation of Diffusive Time of Flight (DTOF) Map

Estimate the DTOF map based on the field monitoring measurements

Prediction of CO₂ Plume Images

ATIONAL ENERGY **FECHNOLOGY** ORATORY

> Gas saturation (SGAS) Gas saturation

> > - 0.60000 -0.50000

-0.40000

-0.30000

- 0.20000

0.10000

0.00000

Prediction of CO₂ plume images Time $[\sqrt{day}]$ Predicted map - 18.00 - 16.00 14.00 12.00 - 10.00 2.0 - 8.00 - 6.00 - 4.00 - 2.00 Latent space coordinate 2 1.5 0.00 Nearest neighbors (CO₂ saturation) Nearest neighbors 1.0 0.5 0.0 -0.5 Training data sample points -1.0X: Target (estimated using field observed data) •: Nearest neighbors to the target -1.5-20 2 Latent space coordinate 1

Model identification using DTOF map (History Matching)

IBDP Model Description and Data Availability

- •Grid: 126 * 125 * 110 (1.73 Million Cells)
- •ECLIPSE Compositional Model (E300)
- Thermal Option

F

- •CO2STORE Module
- •Simulation Period: 2011-2015
- •Run Time: 12 hours with 32 Cores Parallel run

Acceleration of Training Data Generation

- NATIONAL ENERGY TECHNOLOGY LABORATORY

Challenge: Run time for an original simulation is too long (12 hrs with 32 core) and unfeasible for training data generation purpose (500 realizations)

Upscaling of original model

Areal Coarsening

• Optimal Layering Scheme

Active cell: 1,732,292 → 229,693

- Generate at initial timestep without reservoir simulations
- Few seconds

Run Time: 12 hrs \rightarrow 15 mins (32 core)

Model Coarsening using Bias-Variance Trade-off

Optimal Layering Scheme Selection

Select the optimal number of layers based on bias-variance trade-off between preserved heterogeneity and number of layers (number of grid cells)

Heterogeneity preserved in Coarsened Models

Well Response of Fine vs. Coarsened Model

NATIONAL Energy

FECHNOLOGY ABORATORY

Parameterization for Training Data Generation

4 regions are identified based on geologic layers

NATIONAL

Sensitivity Analysis for Training Data Generation

Properties	Parameters	Description	Low	Base	High
Region Pore Volume Multipliers	MLTPV1	Region 1 PV Multiplier	0.7	1.0	1.3
	MLTPV2	Region 2 PV Multiplier	0.7	1.0	1.3
	MLTPV3	Region 3 PV Multiplier	0.7	1.0	1.3
	MLTPV4	Region 4 PV Multiplier	0.7	1.0	1.3
Region TRANX Multipliers	MULTX1	Region 1 TRANX Multiplier	0.5	1.0	2.0
	MULTX2	Region 2 TRANX Multiplier	0.5	1.0	2.0
	MULTX3	Region 3 TRANX Multiplier	0.5	1.0	2.0
	MULTX4	Region 4 TRANX Multiplier	0.5	1.0	2.0
Region TRANZ Multipliers	MULTZ1	Region 1 TRANZ Multiplier	0.1	0.5	1.0
	MULTZ2	Region 2 TRANZ Multiplier	0.1	0.5	1.0
	MULTZ3	Region 3 TRANZ Multiplier	0.1	0.5	1.0
	MULTZ4	Region 4 TRANZ Multiplier	0.1	0.5	1.0
Rock Compressibility	ROCK	Rock Compressibility	2.7E-6	3.2E-6	3.7E-6
Rock Heat Capacity	HEATCR	Rock volumetric heat capacity	0.3	0.5	0.7
Thermal Conductivity	THCONR	Combined rock and fluid thermal conductivity	1.0	2.0	3.0

Sensitivity Analysis for Training Data Generation

Selected Parameters: MLTPV3, MULTX3, MULTZ3, MLTPV4, THCON

Training Data Generation: Pressure Responses

Ļ

NATIONAL ENERGY

IECHNOLOGY ABORATORY

Training Data Generation: DTOF Images and DTS

Neural Network Architecture and Training

NATIONAL ENERGY

Neural Network Architecture: Prediction

- NATIONAL ENERGY TECHNOLOGY LABORATORY
- Input the pressure responses of injection well/monitoring well and DTS at injector and predict the DTOF map

History Matching Results: Pressure and Temperature Response

Ļ

CO2 Plume Evolution of Calibrated Models

Summary: Challenges, Gaps and Opportunities

- Proposed ML assisted workflow and application to the IBDP site shows promising results with orders of magnitude speed up
- Incorporated thermal effects to integrate DTS data
- Utilized DTOF maps to further reduce computational time and facilitate realtime decision making
- Key Development Challenges and Gaps
 - Incorporation of additional physics: geo-mechanical effects to study potential induced seismicity
 - Use of reduced physics models to speed up training
- New Opportunities
 - Leverage Oil Industry Experience: Fast Marching Method for Coupled Flow, Streamlines for visualization, Storage/CO₂ Sweep Optimization via Rate control

Questions?

This work was performed in support of the U.S. Department of Energy's Fossil Energy and Carbon Management's SMART Phase 2 and executed through the National Energy Technology Laboratory (NETL) Research & Innovation Center.

