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Disclaimer
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This project was funded by the U.S. Department of Energy, National Energy Technology 
Laboratory, in part, through a site support contract. Neither the United States Government 
nor any agency thereof, nor any of their employees, nor the support contractor, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights.  Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof.

Presenter Notes
Presentation Notes
This is standard DOE disclosure, this work is funded by SMART project
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Objective and Challenges
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• Development and application of ML-assisted tools and workflows for field-

scale application and validation of geologic carbon storage
 Rapid forecasting of CO2 plume evolution and field pressure constrained to observed data 

while accounting for data sparsity and geologic uncertainties

• Current Challenges
 Expensive forward simulation: multiphase, compositional and coupled flow 

 Repeated simulations for model calibration and uncertainty analysis

 Traditional history matching is time consuming -- often takes weeks/months and is not 

amenable to real time decision-making



Proposed Workflow: Outline of Steps
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• Dimensionality and computational time reduction for training data generation
 Diffusive time of flight (DTOF) map representing pressure front propagation

• Neural Network Training
 Variational autoencoder (VAE) for DTOF image compression using latent variables

 Regression model to estimate autoencoder latent variables based on the monitoring data

• Prediction of CO2 plume images
 Estimate DTOF image from monitoring data (pressure and temperature at the injection and 

monitoring wells)

 Predict CO2 plume images

Presenter Notes
Presentation Notes
In our previous presentation, we assimilated BHP and distributed pressure data at the monitoring well. In this presentation, we also have included distributed sensing temperature data at the injection well.
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Data Dimensionality and Computational Time Reduction:
Single DTOF Map Representing Pressure Propagation

Generalization of ROI 
for heterogeneous reservoir
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Eikonal solution takes only a few seconds for multi-million cell models
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Neural Network Training
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DTS data
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Presenter Notes
Presentation Notes
Here is an illustration. The autoencoder compresses the onset time images in terms of latent variables which can be thought of like principal components, and a regression model is used to relate  the latent variables to the the monitoring data.  Finally, the decoder can be used to reconstruct the onset time images from the latent variables.Note: (parameters here are from different work – FMM for unconventional)There are several CNN architectures available (e.g. GoogleNet) which are good starting point for building images.The CNN has multiple layers – the first layer captures low level features such as edges/color and subsequent layers capture more detailed features. The convolution with filter reduces the dimension also. The convolution can be followed by pooling which further reduces the dimension while preserving dominant feature (max pooling). The pooling reduces the computation time.CNN hyper parameters: how many filters, kernel size and stride.   The ‘pooling’ is used to reduce dimension and avoid overfitting. The ‘pooling’ can be max pooling, avg. pooling etc. The validation is used at the same time as training to avoid overfitting. Validation goes through all the steps in back propagation. The final model is used in testing.The autoencoder training for HFTS-1 took ~110 minutes Autoencoder hyper parametersConv3D layer #1 (8 filters, kernel size 3×3×3, stride 2)Conv3D layer #2 (16 filters, kernel size 3×3×3, stride 2)Conv3D layer #3 (32 filters, kernel size 3×3×3, stride 2)Decoder hyperparametersConv3D transpose layer (16 filters, kernel size 3×3×3, stride 2)Conv3D transpose layer (8 filters, kernel size 3×3×3, stride 2)Conv3D transpose layer (1 filters, kernel size 3×3×3, stride 2)Explain latent variable (like PCA). One image on the left and multiple on the right. Mention the stochastic nature.
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Estimation of Diffusive Time of Flight (DTOF) Map

10

Estimate the DTOF map based on the field monitoring measurements
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Presenter Notes
Presentation Notes
Finally, given the trained neural network and field data (for example distributed pressure and temperature data), we can obtain the history matched model and onset time image. Because we are using a VAR, we get multiple images to get a sense of uncertainty



Prediction of CO2 Plume Images
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Model identification using DTOF map (History Matching) Prediction of CO2 plume images

Nearest neighbors (CO2 saturation)

Presenter Notes
Presentation Notes
Finally, given the trained neural network and field data (for example distributed pressure and temperature data), we can obtain the history matched model and onset time image. Because we are using a VAR, we get multiple images to get a sense of uncertainty



IBDP Model Description and Data Availability
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•Grid: 126 * 125 * 110 (1.73 Million Cells)
•ECLIPSE Compositional Model (E300)
•Thermal Option
•CO2STORE Module
•Simulation Period: 2011-2015
•Run Time: 12 hours with 32 Cores Parallel run
 

CCS1
CCS2VW1

VW2
IBDP Observed data

Presenter Notes
Presentation Notes
Mention 12 hours per simulation run (32 cores)  is not affordable for training data generation process.



Acceleration of Training Data Generation
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Challenge: Run time for an original simulation is too long (12 hrs with 32 core) 
and unfeasible for training data generation purpose (500 realizations)

DTOF map generationUpscaling of original model

• Generate at initial timestep 
without reservoir simulations

• Few seconds

…

Run Time: 12 hrs  15 mins (32 core)

• Areal Coarsening • Optimal Layering Scheme

5x5

2x2

Boundary grid
Injection well
Monitoring well

1-3 layers  1 layers

k

Active cell: 1,732,292  229,693

1x1

4-5 layers  1 layers
6-9 layers  1 layers

10-20 layers  1 layers
21-22 layers  1 layers
23-26 layers  1 layers
27-28 layers  1 layers

29 layer  1 layers

30-91 layer  62 layers

92-110 layers  1 layers



Select the optimal number of layers based on bias-variance trade-off between preserved 
heterogeneity and number of layers (number of grid cells)

Optimal Layering Scheme Selection

Model Coarsening using Bias-Variance Trade-off 
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Select the number of layer 
that maximize the area of 

rectangle



Well Response of Fine vs. Coarsened Model
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Original CoarsenedRuntime: 12 hrs  15 min 

Injector Monitoring well Sensor 1 Monitoring well Sensor 2 Monitoring well Sensor 3

Monitoring well Sensor 4 Monitoring well Sensor 5 Monitoring well Sensor 6 DTS



Parameterization for Training Data Generation
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4 regions are identified based on geologic layers

Region-1
Region-2
Region-3
Region-4

Eau Claire/Eau Claire Lime Base/
Eau Claire Shale/Mt. Simon/
Mt. Simon D/Mt. Simon C

Mt. Simon B

Mt. Simon A Upper
Mt. Simon A Lower

Agenta/Precambrian

CCS1 VW1



Sensitivity Analysis for Training Data Generation
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Region-1
Region-2
Region-3
Region-4



Sensitivity Analysis for Training Data Generation
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Selected Parameters: MLTPV3, MULTX3, MULTZ3, MLTPV4, THCON



Training Data Generation: Pressure Responses
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Injector Monitoring well Sensor 1

Monitoring well Sensor 2 Monitoring well Sensor 3

Training data
Observed

Presenter Notes
Presentation Notes
Prepare for Q: Why initial rising of pressure is not captured?



Training Data Generation: DTOF Images and DTS
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Neural Network Architecture and Training
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Original image Reconstructed image

Encoder

47x46x63x8 24x23x32x16 12x12x16x32 73728x1 48x48x64x824x24x32x1673728x1

Decoder

47x46x63

Feed-Forward NN

47x46x63

Z-mean

256x1

Z-var

256x1

256x1

Latent 
variable

Well Pressure [2000, 1000, 100]

12x12x16x32

Runtime ~5.0 hrs (colab GPU)

Activation function: ReLU (sigmoid for the last layer)
13x12x16 7x6x32 4x3x64 12x100

DTS data (25x23x1)



Neural Network Architecture: Prediction

22

• Input the pressure responses of injection well/monitoring well and 
DTS at injector and predict the DTOF map

Predicted image

48x48x64x824x24x32x1673728x1

Trained Decoder

12x12x16x32 47x46x63

Z-mean

256x1

Z-var

256x1

256x1

Latent 
variable

Trained
Feed-Forward NN

[2000, 1000, 100]
Observed Pressure Data

DTS data (25x23x1)
13x12x16 7x6x32 4x3x64 12x100

Trained CNN



History Matching Results: Pressure and Temperature Response
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Posterior 
(10 nearest neighbors)
Observed

PriorCCS1
HM Prediction

WB1

WB2 WB3

Presenter Notes
Presentation Notes
Just say very good match



CO2 Plume Evolution of Calibrated Models
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Gas Saturation

Nov-2012 Nov-2013 Nov-2014 Nov-2015

Post-Injection

1st neighbor

2nd neighbor

CCS1VW1

CCS1VW1



Summary: Challenges, Gaps and Opportunities
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• Proposed ML assisted workflow and application to the IBDP site shows 
promising results with orders of magnitude speed up

• Incorporated thermal effects to integrate DTS data
• Utilized DTOF maps to further reduce computational time and facilitate real-

time decision making
• Key Development Challenges and Gaps

 Incorporation of additional physics: geo-mechanical effects to study potential induced 
seismicity

 Use of reduced physics models to speed up training
• New Opportunities
 Leverage Oil Industry Experience: Fast Marching Method for Coupled Flow, Streamlines for 

visualization, Storage/CO2 Sweep Optimization via Rate control



Questions?
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