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Task Objectives, Preliminary Study, and Challenges
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Challenges:

 Expensive computational cost 
 Limited imaging resolution
 Lack of training dataset 

Study Site & Preliminary Study:

Objectives:
1. To improve the imaging description of fractures & faults at IBDP
2. To obtain a site-agnostic ML-assisted toolset and workflow
3. To demonstrate the benefits of using ML methods

 Study Site: IBDP
 Preliminary Study: Dando et al., (2021) deployed a modified double-difference method to 

identify microseismicity, and further delineated linear clustering of events with uncertainty.

Figure Courtesy of Dando et al., 2021  

Dando et al., “Relocating microseismicity from downhole monitoring of the Decatur CCS site using a modified double-difference algorithm” GJI , 2021. 

Significance:
 Provide fast fluid pathway and flow barrier (input for update reservoir model in task 5)
 Indicate and monitor potential induced seismicity (input for ORION in task 6)



Data Availability – A Case Study at IBDP
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 Passive Seismic Acquisition
 IBDP Installation

 Borehole arrays located at CCS-1, VW-1, VW-2, GM-1
 Total: 31 stations (z-component: 2/4 CCS-1 + 29/31 GM-1)

 USGS/ISGS Installation
 20 surface seismometers (15 USGS + 5 ISGS)

Active Seismic

CCS-1

VW-1

VW-2

GM-1

USGS/ISGS



Proposed Fracture Imaging Workflow – An Overview
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Extract useful microseicmic events from continuous waveform measurements• Event Detection01
Produce 3D velocity model from active/passive seismic data (SubTask 4.4.1)• Velocity Inversion02

Deploy spatio-temporal clustering analysis to obtain fracture lines• Fracture Estimation04
Analyze the uncertainty of the fracture and fault zones 

• Uncertainty 
Quantification 05

Display final fault/fracture representation to field operators
• Fracture 

Visualization06

Obtain microseismic source parameters (location, moment tensors, amplitude, etc)Hypocenter Locating03
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Hypocenter 1 3
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Yes No

Yes No

Yes No

No Action

Yes No

1. Traveltime: SNL/ORNL

2. Waveform: ISGS/UIC 

Events Detection

1. Traveltime: SNL/ORNL

2. Waveform: LANL

3. Waveform: ISGS/UIC

Hypocenter Locating

1. Seismic Pressure: NETL

2. Seismic, Well logs:
ISGS/UIC

3. Seismic: LBL/LLNL

4. Seismic: FACT

Joint Interpretation

1. K-Mean: LANL
2. NMF: SNL
3. Clustering: NETL
4. HypoDD+Focal Mech: 

ISGS/UIC
5. OpenDtect: FACT

Fracture Estimation

1. Petrel: EERC

Fracture Visualization

Decision Tree for Tool Selections

Raw Continuous Seismic or Derivatives: Continuous raw seismic waveform data.
Seismic Catalog: Waveform segments with detected passive seismic events.
Hypocenter: Spatial locations of detected seismic events.
Other Data: All other kinds of measurements including pressure, inSAR, EM, etc.).
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LANL – DeFault: Deep-learning-based Fault Delineation 
(POC: Y. Lin)
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01

Hanchen Wang, et al, “DeFault: Deep-learning-based Delineation Using Domain Adaptation Training and Automatic Clustering”, ESS 2024 (Under Review). 

Enhance waveform data by carrying out bandpass filters, amplitude normalization, F-k
dipping filter,  time-domain noise removal, averaged F-k envelop filter

01 – Data Pre-Processing on Raw Seismic Waveform

Temporal period selection, K-means spatial clustering, outlier removal, least squared distance fault plane 
estimation

04 – Employ Spatio-temporal clustering analysis to delinate Fracture imaging

Leverage 3D velocity model and acoustic wave equation to generate full-
physics training data
Gaussian heatmaps centering at true source locations – spatial distribution

02 – Full-waveform data synthesis to build high-
fidelity traning set 

MLReal data domain adaptation, deploy encoder-decoder full-waveform inversion to obtain microseismic event location heatmaps
Heatmap upsampling to remove griding effect, interpolation of first and second maximum values to get coordinates predictions

03 – ML-based Full-Waveform Inversion to Relocate Source Parameters 

03

02 03

03

field test set

syn train set DeFault [Wang et al., 2024]
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Enhance waveform data by carrying out bandpass filters, amplitude normalization, F-k
dipping filter,  time-domain noise removal, averaged F-k envelop filter

01 – Data Pre-Processing on Raw Seismic Waveform

Temporal period selection, K-means spatial clustering, outlier removal, least squared distance fault plane 
estimation

04 – Employ Spatio-temporal clustering analysis to delinate Fracture imaging

Leverage 3D velocity model and acoustic wave equation to generate full-
physics training data
Gaussian heatmaps centering at true source locations – spatial distribution

02 – Full-waveform data synthesis to build high-
fidelity traning set 

MLReal data domain adaptation, deploy encoder-decoder full-waveform inversion to obtain microseismic event location heatmaps
Heatmap upsampling to remove griding effect, interpolation of first and second maximum values to get coordinates predictions

03 – ML-based Full-Waveform Inversion to Relocate Source Parameters 

DeFault [Wang et al., 2024]

field test set

03
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LANL – DeFault: Deep-learning-based Fault Delineation 
(POC: Y. Lin)

Hanchen Wang, et al, “DeFault: Deep-learning-based Delineation Using Domain Adaptation Training and Automatic Clustering”, ESS 2024 (Under Review). 



SNL – Fault Imaging via Event Detection & Source estimation 
(POC: J. Harding & H. Yoon)
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Synthetic data generation: 
SeismoML (WGAN)

• 10s raw 
continuous 
waveform data 
(e.g., 4 to 3 
channels) 

• WGAN model Input: source 
locations and distance of ~400 
events from catalog and output of 
waveform

• Apply trained seismoML model to 
generate synthetic waveforms of 
each channel (H1,H2,V)

• Screen generated waveform data 
by phase arrival times (PhaseNet)

• Construct synthetic waveform 
data over a range of source 
locations & distance

• Train a multi modal CNN with 
spectrograms and P&S arrival 
(binary) of each channel data

Event clustering & 
construct faults

Multi modal CNN for source 
locations of newly detected 
events

 Integrated ML approaches of event detection and source location estimation
 Data pre-processing of raw continuous microseismic data & event detection
 Data augmentation using WGAN (Wasserstein Generative Adversarial Network)

Data processing 
of raw waveform 
continuous data

Event detection & 
arrival time: CNN 
& U-Net models

• Train a CNN model 
for event detection 
with 3 channel & 
energy feature as 
input and retrain 
PhaseNet for arrival 
time

• Event clustering using 
NMF-HMM (Non-
negative matrix 
factorization Hidden 
Markov Model) to 
construct planar faults

• PhaseNet used to downselect generated event data with high quality
• CNN model with multi-modal input for source location estimation of events



ORNL – Fault & Fracture Identification 
(POC: C. Chai & M. Maceira)
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NETL – ML-Based Fracture Network Quantification 
(POC: A. Kumar)
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Microseismic Catalog

Bottomhole Pressure Data

Microseismic Triggering Fronts

Machine Learning

Microseismic Clustering

Fracture Plane Orientations
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Fracture Imaging Workflow – Lessons Learned
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 Pure ML methods suffers from weak generalization ability, high 

training cost, and require a large volume of training data

 One solution is to incorporate underlying physics, geology 

knowledge – Physics-guided ML



Questions?
15
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