

Operational Forecasting of Induced Seismicity (ORION) Toolkit

Lead Developers: Kayla Kroll¹ and Christopher Sherman¹ Co-developers: Gina Geffers¹, Chaoyi Wang¹, Keurfon Luu²

¹Lawrence Livermore National Laboratory ²Lawrence Berkeley National Laboratory

0010110 011101101

Seismic Forecasting

Forecast Stakeholders

Forecasting Requirements

Required Input: Seismic Catalog

Required Input: Pressure Model

Pre-calculated pressure table

 ORION can support a variety of formats (using the USM as a converter), but prefers hdf5-format files

ML/ROM Pressure Model

Support through USM/other tools

Radial flow model (Theis)

- Assumes an infinite homogeneous half-space
- Requires constant or time-varying flow rate data into wells

The fluid pressure, p, is given by the superposition of each well contribution:

$$p=rac{
ho g}{4piT}igg(z+\sum_{i=1}^N q_iW(u_i)igg) \qquad u_i=rac{r_i^2s}{4T(t-t_i)}$$

Ensemble of Induced Seismicity Forecasting Models

Physics-based Model

Coupled Coulomb Rate-State Model (Dieterich, 1994; Kroll et al., 2017)

$$R = \exp\left(\frac{\Delta CFS}{a\sigma_{eff}}\right) \qquad \text{Coseismic}$$

$$R(t) = \frac{1}{\frac{1}{\dot{s}f_r} + \left(\frac{1}{R_0} - \frac{1}{\dot{s}f_r}\right) \exp\left(\frac{-\dot{s}t}{a\sigma_{eff}}\right)}; \quad f_r = \frac{r}{\dot{s}_r} \quad \text{Interseismic}$$

Rate-State ODE (Dieterich, 1994; Segall and Lu, 2015)

$$\frac{dR}{dt} = \frac{R}{t_a} \left(\frac{\dot{S}}{\dot{S}_0} - R \right)$$

*Declustered

Statistical Models

ETAS Models (Ogata, 1988; Bachmann et al., 2013) Gutenberg-Richter Law: $\lambda_i(t) = \rho(M_i)\Phi(t - t_i)$ $\rho(M_i) = k 10^{\alpha(M-M_0)}$ Omori's Law: $\lambda_0(t) = \mu + c_f Q$ $\Phi(\Delta_t) = \frac{k}{(t+c)^p}$ $\lambda(t) = \lambda'_0 + \sum_{\{i, t\} \in t} \lambda_i(t)$ Seismogenic Index (Shapiro et al., 2010) $SI = \log_{10} N - \log_{10} \sum \dot{S} + bM$

 $R = \dot{S}^2 \, 10^{SI - bM}$

Ensemble of Induced Seismicity Forecasting Models

Physics-based Model $\dot{S} = \dot{\tau} + \mu(\dot{\sigma} - \dot{p})$ **Statistical Models** ETAS Models (Ogata, 1988; Bachmann et al., 2013) **Coupled Coulomb Rate-State Model** Gutenberg-Richter Law: $\lambda_i(t) = \rho(M_i)\Phi(t - t_i)$ (Dieterich, 1994; Kroll et al., 2017) $\rho(M_i) = k 10^{\alpha(M-M_0)}$ Omori's Law: $R = \exp\left(\frac{\Delta CFS}{a\sigma_{eff}}\right)$ Coseismic $\lambda_0(t) = \mu + c_f Q$ $\Phi(\Delta_t) = \frac{k}{(t+c)^p}$ $R(t) = \frac{1}{\frac{1}{\frac{1}{s_{f}} + \left(\frac{1}{R_{o}} - \frac{1}{s_{f}}\right) \exp\left(\frac{-\dot{s}t}{a_{f}}\right)}}; \quad f_{r} = \frac{r}{\dot{s}_{r}} \quad \text{Interseismic}$ $\lambda(t) = \lambda'_0 + \sum_{\{i, t\} \in t} \lambda_i(t)$ **Rate-State ODE** Seismogenic Index (Shapiro et al., 2010) (Dieterich, 1994; Segall and Lu, 2015) $SI = \log_{10} N - \log_{10} \sum \dot{S} + bM$ $\frac{dR}{dt} = \frac{R}{t_a} \left(\frac{S}{\dot{S}_a} - R \right)$ $R = \dot{S}^2 \, 10^{SI - bM}$ *Declustered

Ensemble of Induced Seismicity Forecasting Models

Physics-based Model

Coupled Coulomb Rate-State Model (Dieterich, 1994; Kroll et al., 2017)

$$R = \exp\left(\frac{\Delta CFS}{a\sigma_{eff}}\right) \text{ Clustering (EQ interaction)}$$
$$R(t) = \frac{1}{\frac{1}{\dot{s}f_r} + \left(\frac{1}{R_0} - \frac{1}{\dot{s}f_r}\right) \exp\left(\frac{-\dot{s}t}{a\sigma_{eff}}\right)}; \ f_r = \frac{r}{\dot{s}_r} \text{ Interseismic}$$

Rate-State ODE (Dieterich, 1994; Segall and Lu, 2015)

$$\frac{dR}{dt} = \frac{R}{t_a} \left(\frac{\dot{S}}{\dot{S}_0} - R \right)$$

*Declustered

Statistical Models

ETAS Models (Ogata, 1988; Bachmann et al., 2013) Gutenberg-Richter Law: $\lambda_i(t) = \rho(M_i)\Phi(t - t_i)$ $\rho(M_i) = k 10^{\alpha(M-M_0)}$ Omori's Law: $\lambda_0(t) = \mu + c_f Q$ $\Phi(\Delta_t) = \frac{k}{(t+c)^p}$ $\lambda(t) = \lambda'_0 + \sum_{\{i, t\} \in t} \lambda_i(t)$ Seismogenic Index (Shapiro et al., 2010) $SI = \log_{10} N - \log_{10} \sum \dot{S} + bM$

$$R = \dot{S}^2 \ 10^{SI - bM}$$

Various Induced Seismicity Forecasting Models

Statistical Models

Cattania et al., 2018

10

ML-based Forecasts

U.S. DEPARTMENT OF

11

Ensemble Forecasting Approach

Ensemble Forecasting Approach

ORION Code Structure

- ORION is organized as a pure-python, pipinstallable package
- Hosted on Gitlab:
 - <u>https://gitlab.com/NRAP/orion</u>
- Submodules contain tools for managing data, forecasting, visualization, etc.

Code formatting/Structure guidelines:

- PEP8 standards, enforced using the YAPF tool
- Developers are expected to use humanreadable variables, modern object-oriented coding practices
- Classes, functions, methods, etc. include google format docstrings

ORION Documentation

• Documentation is written in .rst format, and built using Sphinx

- The build/hosting process is managed automatically by the Gitlab CI
- <u>https://nrap.gitlab.io/orion/user_guide.html</u>

Components:

- User guide
- Examples
- Description of data formats
- Developer guide
- ORION API

Some optional features (fetching ComCat catalogs from the Internet, etc) require pycsep) which has some non-Python pre-requisites that may not be present on your system (proj, geos, shapely). To setup your environment, we recommend first following the steps in the <u>PyCSEP Documentation</u>. After this, Orion can be installed via *pip*` with the optional features:

15

Version Control and Testing Pipeline

- Developers commit/push local code changes using git
- Merge Requests are used for code review, testing, record keeping, etc.
- The CI pipeline runs a variety of tests to ensure the quality of the code

ORION Distribution

- Depending on a user's skill level / interest, they can work with ORION in a few different ways
- From easiest to hardest:
 - Pre-compiled executable (built using pyinstaller, includes all of the necessary prerequisites to run the code)
 - Install the package from a package manager (e.g. pypi)
 - Install the package from source (git)

• Work in progress:

 For STRIVE-enabled ORION, users should simply need to visit a website

ORION 1.0.0 Historical release

Assets 4

2) Source code (zip) よ 2) Source code (tar.gz) よ 2) Source code (tar.bz2) よ 2) Source code (tar) よ

Release notes

- Improved seismic characteristic estimation
 - b-value
 - Magnitude of completeness
- Updated seismic forecast models
 - Implemented the SAIF forecast model
 - General upgrades to CRS model
 - General upgrades to SI model
- Improved spatial projections of point data and grids
 - Changed pyproj and pycsep to hard dependencies
 - $\,\circ\,$ Added options for Lat/Lon, UTM, and General inputs (using Proj codes)
 - Added per-input source projections
- Added spatial projection unit tests
- Added spatial unit specifications
 - $\,\circ\,$ Spatial units allowed for user inputs
 - $\,\circ\,$ Grid manager units will be mirrored on figure pages
- Added integrated tests with baseline projection
 - $\,\circ\,$ Targets include the default case, IBDP case
- Implemented various bugfixes
 - Font size
 - Repeated run issues
 - Logger configuration

Basin Scale Spatio-temporal Forecasts

• Tailoring forecasting capabilities to various end-users:

- Define user groups / stakeholders
 - Define access each group will have
 - Define use cases for each group
- Start with set of simple questions
 - Answer lead to different groups
 - Refine questions to get more specific / distinguish different groups
- Do not overcomplicate it
 - Max three to four layers

ORION Application Example: IBDP

Local seismic catalog, well information

NO RION **

Pressure Table_TOUGHFLAC (t=1123.51 days, z=2100.38 m) Depth (m) seismic dpdt (Pa/year) wells -0.5M -1M Seismic Catalog Time (days) Wells Wells (path) 2500 2000 -1.5M 1500 2500 1000 2000 Time (days) 1500 Z (km) -2M 0 1000 DEPARTMENT OF 500

Pressure model (source: TOUGH+FLAC)

ORION Application Example: IBDP

ORION Application Example: IBDP

ORION+SAIF

- Direct re-implementation of physics-based forecast model in pyTorch
- Extremely fast run time
- Enables automatic optimization of forecast parameters

ORION Startup Wizard

This wir time ru

U.S. DE

ndow opens on a first- In, or via user request:	Quicks	tart _ 🗆 ×			
	Welcome to the ORION tool!				
	How would you like to use this tool?	stand earthquake activity in my community			
	What time units would you like to use?				
	What distance units would you like to use? km				
	Previous	Next			
				Other options)
			Quickstart	_ = ×	
Quite	-letart E X	Tell us more when and where you felt the	e earthquake:		
What location are you interested in?		I felt it within the last	days		
		Where did you feel it? Zip Code or GPS Coordinates (latitude, longitude)			
Location: Zip Co	de or GPS Coordinates (latitude, longitude)	or			
Previous	Next	Provide the USGS URL or ID	Open Map		
		Previous		Next	
	Quidette				
	Guickstan	×			
	How large of an area and time range are ye	ou interested in?			
	Distance to search for events	100.0 km			
	Time to search for events in the past	100.0 days			
PARTMENT OF	Time to forecast earthquake activity in the	future 0.0 days	(Implemer	atation in	
ERGY	Previous	Next		Progress)	S
			STRIVE III-	riogiess/	0

