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• A total of 3.8 mega-ton of CO2 were injected

• 9,506 micro-seismic events detected during injection

• Maximum of 25 millimeters uplift

In Salah Project

Detected Microseismic Events

InSAR Measured Ground Deformation



Motivation
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Reservoir Model (Rutqvist, 2012)

Coupling Equations

Computationally Demanding !!!



Introduction
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Main Objective:

Major Components of Workflow: 

Develop a ML-assisted optimization workflow to optimize CO2 

storage performance under Geomechanical risks.

1. Construct a physics-based CO2 storage model and quantify the 
associated geomechanical risks, including ground displacement 
and safety factor.

2. Develop a ML-based surrogate model to output the quantified 
geomechanical risks.

3. Build an optimization workflow to optimization CO2 storage while 
minimizing geomechanical risks.



Methodology – Physics-based Model 
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𝑆𝑆𝑆𝑆 = 1 − min (1, 𝐶𝐶𝐶𝐶/𝐶𝐶𝐶𝐶)

Safety Factor (potential to trigger micro-seismicity)

Reservoir Model

Build a coupled flow-geomechanics simulation model for CO2 storage

Large SF → safer injection
Small SF → dangerous
   SF = 0  → Rock failure
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Methodology – Physics-based Model 
Build a coupled flow-geomechanics simulation model for CO2 storage
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Base case Low permeability case

Flow properties

Permeability (mD) 0.69 - 936.90 0.069 – 93.69
Porosity 0.078 - 0.27

same

Reservoir depth (m) 2000 - 2050

pore pressure gradient (kPa/m) 9.8

Temperature (C) 44
Kv/kh 0.1

Geomechanical 
Properties

Young’s Modulus (GPa) 45
Poisson’s Ratio 0.25
Cohesion (kPa) 3000
Friction Angle 20

Biot’s coefficient 0.8
𝜕𝜕𝜎𝜎𝑥𝑥𝑥𝑥′ /𝜕𝜕𝜕𝜕 (kPa/m) 10

𝜕𝜕𝜎𝜎𝑦𝑦𝑦𝑦′ /𝜕𝜕𝜕𝜕 12
𝜕𝜕𝜎𝜎𝑧𝑧𝑧𝑧′ /𝜕𝜕𝜕𝜕 13

Methodology – Physics-based Model 
Model Settings
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(Li et al., 2020; Yan et al., 2022) 

Methodology – ML-based Model 
Construct an FNO-based surrogate model using synthetic dataset



Methodology – General Optimization Workflow

Develop proxy 
model

Define decision 
variables and 

objective function

Select 
optimization 

algorithm

Determine the 
optimal control 

parameters

Build physics-
based model

`

Injection Rate 
Synthetic Dataset

𝒇𝒇(𝒖𝒖)�
𝑓𝑓1 = max(𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ), 
𝑓𝑓2 = min(max(𝐷𝐷𝑧𝑧)) , 
𝑓𝑓3 = max(min(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)).

Genetic Algorithm

… … … …
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 
𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚≤ 𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ,
𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ≤ 𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚.
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Result – Base Case

𝒖𝒖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑢𝑢∈∅𝑢𝑢𝒇𝒇 𝒖𝒖 = �
𝑓𝑓1(𝒖𝒖) = 𝑚𝑚𝑎𝑎𝑎𝑎(𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ), 

𝑓𝑓2(𝒖𝒖) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑫𝑫𝒛𝒛(𝒖𝒖) . 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 
𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚≤ 𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ,
𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ≤ 𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚 .

Bi-objective Optimization:

• Optimization minimizes optimal vertical 
displacement from initial of 0.009 to 0.0075 m, 
achieving 16.7% mitigation.
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• Increase optimal CO2 storage for 13.3% for 
same level of displacement.

Case 3

𝑀𝑀
𝐶𝐶𝑂𝑂

2
,𝑀𝑀
𝑀𝑀
𝑀𝑀

GA Optimization Results

Case 1

Case 2

Case 4

+13.3%

-16.7%



Result – Base Case

Case 1

Case 2

Case 3

Case 4

11

• As total storage increase, maximum vertical 
displacement also increases. (Cases 1, 2, 3)

• The maximum injection rate for Pareto 
solutions occur at the beginning of the 
injection period where reservoir has more 
room for pressure buildup, resulting in less 
vertical displacement. (Case 1 vs Case 4)



Result – Low Permeability Case

𝒇𝒇(𝒖𝒖)�
𝑓𝑓1 = max(𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ), 
𝑓𝑓2 = min(max(𝐷𝐷𝑧𝑧)) , 
𝑓𝑓3 = max(min(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)).

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 
𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚≤ 𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ,
𝑀𝑀𝐶𝐶𝑂𝑂2 𝒖𝒖 ≤ 𝑀𝑀𝐶𝐶𝑂𝑂2_𝑚𝑚𝑚𝑚𝑚𝑚 .

Optimization Formulation:
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• The optimization algorithm successfully improves the 
initial population’s minimum safety factor from 0 
(indicating rock fracturing) to a Pareto population 
maximum value of 0.61 (indicating safe injection). 

• The optimal maximum vertical displacement also 
decreased from approximately 0.04 m to about 0.03 m, 
achieving 25% mitigation.

max(𝐷𝐷𝑧𝑧) ,𝑚𝑚

𝑀𝑀
𝐶𝐶𝑂𝑂

2
,𝑀𝑀
𝑀𝑀
𝑀𝑀

-25%max(𝐷𝐷𝑧𝑧) ,𝑚𝑚

𝑀𝑀𝐶𝐶𝑂𝑂2 ,𝑀𝑀𝑀𝑀𝑀𝑀

GA Optimization Results

min(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

min(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

𝑀𝑀
𝐶𝐶𝑂𝑂

2
,𝑀𝑀
𝑀𝑀
𝑀𝑀

Case 1

Case 1
• An early maximum injection allowed for better pressure 

dissipation, leading to safer storage (consistent with 
previous observation).
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Result – Computational Cost

Base Case
Generation 0 Generation 20

GA 

# of simulation evaluated: 600

0

500

1000

1500
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ur

Total Run Time

Physics-based model ML model

9 mins

1200 hrs

Low Perm Case
Generation 0 Generation 43

GA 

# of simulation evaluated: 1290

0
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3000
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Total Run Time

Physics-based model ML model

20 mins

2580 hrs

Pareto-front

80,000 times faster!
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Summary
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 Demonstrated the effectiveness of using FNO-based ML- 
surrogate models and the NSGA-II Genetic Algorithm for 
optimizing CO2 injection strategies under geomechanical risks.

 The Pareto-front indicates optimal trade-offs between CO2 
storage, safety (micro-seismicity), and vertical displacement. 

 Achieved 80,000-fold computational cost saving.

 Challenging problem – CO2 Storage under Geomechanics:
 Non-linear and Multiphysics Processes
 Complex Rock’s Failure/Fracturing Mechanisms
 Non-convex, Global Optimization Formulation
 High Computational Cost



Thank you!
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