

SMART Initiative - Phase 2

<u>Science-informed</u> <u>Machine Learning to</u> <u>Accelerate</u> <u>R</u>eal <u>Time</u> (SMART) Decisions in Subsurface Applications

ML-Based Optimization for CO₂ Injection under Geomechanical Risks

Bailian Chen, Fangning Zheng, Martin Ma

August 6th, 2024

9110 01110110 01001110 10000110 1

Motivation

- A total of **3.8 mega-ton** of CO₂ were injected
- 9,506 micro-seismic events detected during injection
- Maximum of **25 millimeters uplift**

Motivation

Computationally Demanding !!!

Main Objective:

Develop a ML-assisted optimization workflow to optimize CO₂ storage performance under Geomechanical risks.

Major Components of Workflow:

- 1. Construct a physics-based CO₂ storage model and quantify the associated geomechanical risks, including ground displacement and safety factor.
- 2. Develop a ML-based surrogate model to output the quantified geomechanical risks.
- 3. Build an optimization workflow to optimization CO₂ storage while minimizing geomechanical risks.

Methodology – Physics-based Model

Build a coupled flow-geomechanics simulation model for CO₂ storage

Methodology – Physics-based Model

Build a coupled flow-geomechanics simulation model for CO₂ storage

Methodology – Physics-based Model

Model Settings

		Base case	Low permeability case
Flow properties	Permeability (mD)	0.69 - 936.90	0.069 - 93.69
	Porosity	0.078 - 0.27	
	Reservoir depth (m)	2000 - 2050	
	pore pressure gradient (kPa/m)	9.8	
	Temperature (C)	44	
	Kv/kh	0.1	
Geomechanical Properties	Young's Modulus (GPa)	45	
	Poisson's Ratio	0.25	same
	Cohesion (kPa)	3000	
	Friction Angle	20	
	Biot's coefficient	0.8	
	$\partial \sigma'_{xx} / \partial z$ (kPa/m)	10	
	$\partial \sigma'_{yy} / \partial z$	12	
	$\partial \sigma'_{zz}/\partial z$	13	

Methodology – ML-based Model

Construct an FNO-based surrogate model using synthetic dataset

Methodology – General Optimization Workflow

Bi-objective Optimization:

$$\boldsymbol{u}^* = argmin_{u \in \emptyset_u} \boldsymbol{f}(\boldsymbol{u}) = \begin{cases} f_1(\boldsymbol{u}) = max(M_{CO_2}(\boldsymbol{u})), \\ f_2(\boldsymbol{u}) = min(max(\boldsymbol{D}_z(\boldsymbol{u}))) \end{cases}$$

subject to
$$\begin{aligned} & M_{CO_2_min} \leq M_{CO_2}(\boldsymbol{u}), \\ & M_{CO_2}(\boldsymbol{u}) \leq M_{CO_2_max}. \end{aligned}$$

- Optimization minimizes optimal vertical ≥ displacement from initial of 0.009 to 0.0075 m, 3 achieving 16.7% mitigation.
- Increase optimal CO₂ storage for 13.3% for same level of displacement.

Result – Base Case

U.S. DEPARTMENT OF

- As total storage increase, maximum vertical displacement also increases. (Cases 1, 2, 3)
- The **maximum injection rate** for Pareto solutions occur at the **beginning** of the injection period where reservoir has more room for pressure buildup, resulting in **less** vertical displacement. (Case 1 vs Case 4)

Result – Low Permeability Case

Optimization Formulation:

 $f(\boldsymbol{u}) \begin{cases} f_1 = \max(M_{CO_2}(\boldsymbol{u}\,)), \\ f_2 = \min(\max(D_Z)), \\ f_3 = \max(\min(safty\,factor)). \end{cases}$ subject to $\frac{M_{CO_2}\min\leq M_{CO_2}(\boldsymbol{u}), \\ M_{CO_2}(\boldsymbol{u}) \leq M_{CO_2}\max. \end{cases}$

- The optimization algorithm successfully improves the initial population's minimum safety factor from 0 (indicating rock fracturing) to a Pareto population maximum value of 0.61 (indicating safe injection).
- The optimal maximum vertical displacement also decreased from approximately 0.04 m to about 0.03 m, achieving 25% mitigation.
- An early maximum injection allowed for better pressure dissipation, leading to safer storage (consistent with previous observation).

Result – Computational Cost

Summary

- ✤ Challenging problem CO₂ Storage under Geomechanics:
 - Non-linear and Multiphysics Processes
 - Complex Rock's Failure/Fracturing Mechanisms
 - Non-convex, Global Optimization Formulation
 - High Computational Cost
- Demonstrated the effectiveness of using FNO-based MLsurrogate models and the NSGA-II Genetic Algorithm for optimizing CO₂ injection strategies under geomechanical risks.
- The Pareto-front indicates optimal trade-offs between CO₂ storage, safety (micro-seismicity), and vertical displacement.
- Achieved 80,000-fold computational cost saving.

Thank you!

