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Motivation
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« Atotal of 3.8 mega-ton of CO, were injected
+ 9,506 micro-seismic events detected during injection

« Maximum of 25 millimeters uplift
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Motivation

Barton-Bandis Fracturing Model
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Intfroduction

PRESSURE MAP

Main Objective:

Develop a ML-assisted optimization workflow to optimize CO,

PVTFLUID
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storage performance under Geomechanical risks.
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2' Develop a ML-based Surrogate mOdel to OUtpUt the quantified FNO-based Model Architecture [
geomechanical risks. e e e e

3. Build an optimization workflow to optimization CO, storage while @%%%@%% W% °°°°°°°°°
minimizing geomechanical risks. Fl%

Major Components of Workflow:

SATURATION MAP

1. Construct a physics-based CO, storage model and quantify the
associated geomechanical risks, including ground displacement
and safety factor.

U.S. DEPARTMENT OF




Methodology - Physics-based Model

Build a coupled flow-geomechanics simulation model for CO, storage

SRR S  ening Equations Safety Factor (potential to trigger micro-seismicity)
* Fluid Mass Balance: T A
dd# +V-wp=pgfp ,
* Linear Momentum Balance: BI
V-o+p,g=0 B :
/ Mohr-Coulomb’s Failure Criterion < ) i
( Normal stresses change c f A :
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\\‘“e .< ‘ runge, | i E
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ant=: ot SF =1— (min (1,CA/CB))
\ T Oefr / NI 1
=ty Y Large SF — safer injection

Small SF — dangerous
SF =0 - Rock failure
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Methodology - Physics-based Model

Build a coupled flow-geomechanics simulation model for CO, storage

Reservoir Grid

Reservoir Grid
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Methodology - Physics-based Model

Model Settings

Base case Low permeability case
Permeability (mD) 0.69 - 936.90 0.069 — 93.69
Porosity 0.078-0.27
Reservoir depth (m) 2000 - 2050
FI rti
OW Properties pore pressure gradient (kPa/m) 9.8
Temperature (C) 44
Kv/kh 0.1
Young’s Modulus (GPa) 45
Poisson’s Ratio 0.25 same
Cohesion (kPa) 3000
Geomechanical Friction Angle 20
Properties Biot’s coefficient 0.8
da,.. /0z (kPa/m) 10
00y, /0z 12

do,,/0z 13
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Methodology - ML-based Model

Construct an FNO-based surrogate model using synthetic dataset

Inputs:
permeability
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Methodology - General Optimization Workflow

Synthetic Dataset fl = maX(MC 0, (u ))r
f(W) f; = min(max(D,)),

f3 = max(min(safty factor)).

Mco, min< Mco,(w), Genetic Algorithm
Mco, (w) < Mco, max-

subject to

: : ' isi Select Determine the
Build physics- Develop proxy DEf".ne S EERE o :
based model odel variables and optimization optimal control
objective function algorithm parameters
Inputs.:. - 128x100x100 -
pirén;a‘;;;ty / FNO-based Model Architecture \
:z - fﬁ Outputs:
. D,
porgiu’ty 32x100x100
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Result — Base Case

Bi-objective Optimization:

55
. _ . _ fi(w) = max(Mco2 (w)),
W= argminue,f () = {fz () = min(max(D, (). 50.
. Mco, min< Mco, (W), 451
subject to > 2

MCOZ (u) = MCOZ_max- E
40-

=

R

S 35

* Optimization minimizes optimal vertical =

displacement from initial of 0.009 to 0.0075 m, 30

achieving 16.7% mitigation.

25

* Increase optimal CO, storage for 13.3% for

same level of displacement. 201
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GA Optimization Results

max(D;), m
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Result — Base Case

Vertical Displacement, D, (m)
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As total storage increase, maximum vertical
displacement also increases. (Cases 1, 2, 3)

The maximum injection rate for Pareto
solutions occur at the beginning of the
injection period where reservoir has more
room for pressure buildup, resulting in less
vertical displacement. (Case 1 vs Case 4)
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Result - Low Permeability Case

Optimization Formulation: GA Optimization Results
fl = maX(MCOZ (u ))’ ;‘f? Solution space
f@){ f, = min(max(D,)), el

& Selected points

f3 = max(min(safty factor)).

N
w
Mco,, MMT

Mco, min< Mco, (W),
MCOZ (u) < MCOZ_max'

30
Mco,, MMT 0.0 0.2 0.4

subject to 25 min(Safety Factor)

« The optimization algorithm successfully improves the
initial population’s minimum safety factor from 0
(indicating rock fracturing) to a Pareto population
maximum value of 0.61 (indicating safe injection).

* The optimal maximum vertical displacement also e
decreased from approximately 0.04 m to about 0.03 m, max(D,), m
achieving 25% mitigation.

Vertical Displacement, D, (m)

* An early maximum injection allowed for better pressure
dissipation, leading to safer storage (consistent with Case 1|8 oty Factor

previous observation). w
year
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Result - Computational Cost

Base Case Low Perm Case
Generation 0 Generation 20 Generation 0 Generation 43

Pareto-front;” e 4 o ® <y i
.wq L] .-‘QJ°

cceme d GA s’ . ‘ “}‘ GA o f‘l‘#c
: "%‘\ .

| o ) - ' = , ..
[ | 80,000 times faster! '

# of simulation evall tion evaluated: 1290

Total Run Ti ital Run Time
1500
1200 hrs 2580 hrs
. 1000 . 2000
> >
O O
I . T .
500 9 mins 1000 20 mins
0 —/ 0 L
M Physics-based model ® ML model M Physics-based model  ® ML model
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Summary

Dataset fi= max(Mco, ),
llllllllllllllll - f(u) f = min (maX(DZ)) s
%% @ f; max(min(safty factor)).
‘ﬁ'ﬁ"“\-
o . . . $’ Mo, min< Mco, () Genetic Algorithm
% Challenging problem — CO, Storage under Geomechanics: P o) < Mt
. . . Define decision Select Determine the
» Non-linear and Multiphysics Processes P o varisblesand | gl optimization [l 2 optimal control
objective function algorithm parameters

Complex Rock’s Failure/Fracturing Mechanisms

>
» Non-convex, Global Optimization Formulation
» High Computational Cost

o .
D;
or
Safety factor

*» Demonstrated the effectiveness of using FNO-based ML-

surrogate models and the NSGA-Il Genetic Algorithm for
optimizing CO, injection strategies under geomechanical risks. Total Run Time
3000
% The Pareto-front indicates optimal trade-offs between CO,
storage, safety (micro-seismicity), and vertical displacement. _ 2000
% Achieved 80,000-fold computational cost saving. T 1000 ’
0
B Physics-based model  ® ML model
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