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Rock Physics Modeling and Seismic Property Estimation 

• Element 4.2.2 – Athos Nathanail and Manika Prasad, Colorado School of Mines

• Element 4.2.4 – Stas Glubokovskikh and David Alumbaugh, Lawrence Berkeley National 
Lab



Element 4.2.4 Seismic detectability of the CO2 plume at IBDP
Data analysis workflow
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Seismic detectability of the CO2 plume at Various Sites
Comparison of the IBDP response to other CCS projects globally
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CaMI: VP%, 12 m, VP
0=3.4 km/s

(Kolkman-Quinn et al., 2023)

Frio-II: VP%, 12 m, VP
0=3.0 km/s

(Daley et al., 2007)

Aquistore: VP%, 20 m, VP
0=3.1 km/s

(Roach et al., 2015)

Sleipner: VP%, many 20 m +, VP
0=2.1 km/s

(Falcon-Suarez et al., 2015)

Nagaoka: VP%, 8 m, 
VP

0=2.5 km/s
(Caspari et al., 2011)

Otway: VP%, 12 m, 
VP

0=2.9 km/s
(Glubokovskikh et al., 2017)

IBDP: VP−%, many 10 m, VP
0=4.8km/s



New Element ML for automated seismic monitorability evaluation
Rock physics modeling requires expertise and involves subjective judgement. We aim to alleviate that.
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1. Automation of rock physics simulations

2. Refinement of the stratified CO2 plume

3. Automatic evaluation of seismic monitorability for operators

Rock 
Physics



Element 4.1.2 Geophysical Property Ensemble Generation
• Zihan Ren and Sanjay Srinivasan, Penn Stat University

• Stas Glubokovskikh, Lawrence Berkeley National Lab

• Hongkyu Yoon, Sandia National Lab
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Element 4.1.2



Element 4.1.2 Geophysical Property Ensemble Generation 
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Element 4.4.1 – Modification of Active Source Seismic ML Imaging to use 
Microseismic locations as sources, and testing with Kimberlina Synthetic Data 

3D ML Inversion Network for MEQ Data



Element 4.4.1 – Modification of Active Source Seismic ML Imaging to use 
Microseismic locations as sources, and testing with Kimberlina Synthetic Data 

• Evan Um and David Alumbaugh, Lawrence Berkeley National Lab 

• Hanchen Wang and Youzuo Lin, Formerly Los Alamos National Lab

Micro-seismic Event Locations and Surface Geophone Grids

• Data type: travel time data (first arrival picks)

• Groups of event locations:
• Cluster 1: X=[5,5.99], Y=[0,0.75], Z=[1.5,3] km

• Cluster 2: X=[2.5,3.5], Y=[4.5,5.29], Z=[1.5,3] km

• Cluster 3: X=[0.5,3], Y=[1.75,3.5], Z=[1,3] km

• # of Kimberlina CO2 models: 2079 (=33*63)

• # of events per model: 1000

• For training, a 64x64 geophone grid is used. 
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Element 4.4.1 – Modification of Active Source Seismic ML Imaging to use 
Microseismic locations as sources, and testing with Kimberlina Synthetic Data 

Depth=3.19km

Ground Truth:

Prediction:

3D ML Inversion with Synthetic Kimberlina Test Data



Element 4.4.1 – Modification of Active Source Seismic ML Imaging to use 
Microseismic locations as sources, and testing with Kimberlina Synthetic Data 

Training Data Example and  Sensitivity to CO2 plume

Depth=3.19km



Element 4.4.1 – Application to IPDP Microseismic Data Set

• Evan Um and David Alumbaugh, Lawrence Berkeley National Lab, ML Imaging 

• Hanchen Wang and Youzuo Lin, Formerly Los Alamos National Lab, Training Data Generation

• Chengping Chai, Oakridge National Lab, Microseismic Data Curation

• The number of training model: 5,000 
(100*50)

• The number of geophones: 31 (GM1 
borehole geophone array)

• The number of MEQ events: 194 (from 
May 2014 to Nov 2014)

Training Data Generation Issues
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Element 4.4.1 – Application to IPDP Microseismic Data Set
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Conclusions

• A workflow has been designed to image CO2 saturations using micro-seismic hypocenter locations as 
known source points

• The ‘stiff’ reservoir rocks at the IBDP site limit the usefulness of the approach due to 

◦ Relatively small rock velocity perturbations due to the introduction of CO2 into the reservoir plus

◦ Relatively thin reservoir interval yielding

◦ Very small to non-existent travel time changes

• The small (1% to 2%) changes in travel time data in synthetic Kimberlina results suggest that even 
when there is a 15% to 20% change in velocity due to CO2 injection, the ‘data’ changes may still too 
small to provide good imaging.

• We will be working in the next few months to improve the rock physics modeling and other workflow 
elements to incorporate it into the RNG module

• It may be better in areas of large travel time changes due to CO2 injection to develop a ML workflow 
that uses time lapse velocity changes to image both hypocenter locations and CO2 saturation
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