Managing a Gigatonne CCS Future: A Framework for Basin-Scale Storage Optimization Based on Geomechanical Studies

(FWP-FP00015629, FY22-FY25)

Yves Guglielmi, Abdullah Cihan (LBNL) Jens Birkholzer, Meng Cao, Stanislav Glubokovskikh, Matthew Reagan, Jonny Rutqvist, Preston Jordan, Frédéric Cappa, Hafssa Tounsi, Utkarsh Mital

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 5 - 9, 2024

Overall Project Objectives

Develop a Framework for Simulation-Based Storage Management and Storage Optimization at the Basin Scale

Task 2: Transfer fault geomechanics knowledge derived from small-scale in-situ research experiments and/or pilot/demonstration to larger injection volumes and scales so that we can simulate with confidence important geomechanical effects at the scale of large storage complexes.

Task 3: Via a basin-scale simulation and optimization framework, gain a sound understanding of the basin-scale impacts of a gigatonne CCS future, and develop a flexible workflow for simulation and optimization that can be handed over to institutions tasked with regional $CO₂$ storage hub planning.

Task 2 - Advanced 3D fully coupled modeling at 5-10 km scale

- Three-dimensional
- Complex fault geometry (finite length, thickness, curvature)
- Refined 20m fault mesh elements
Interface

- Multiphase fluid flow modeling of supercritical $CO₂$ injection in brine
- Sequential hydro-mechanical coupling
- Elasto-plastic constitutive laws
- Finite difference Finite volume methods

Calculating a 20 years long injection at 25kg/s

Task 3 - Simplified 3D fully coupled modeling at basin scale

- Grid-based numerical models
	- 3D fully coupled poroelastic models (Finite Volume Methodbased)
		- Single-phase and two-phase fluid flow
		- Quasi-static and dynamic elasticity (wave propagation)
- Boundary Element SALSA code
	- Laplace transform + Boundary Element approach to predict transient pressure and stress changes
	- Fault barriers and heterogeneities
- Tensor transformation algorithms built into the models
	- Rapid assessment of slip tendency and Coulomb failure stress (CFS) changes on faults
- Constrained differential evolution optimization algorithm
	- Well placement, injection/extraction control
	- Maximize $CO₂$ storage with constraints such as fault slip and fracturing pressure

Physics transferred to basin scale

In red, the physics tested so far !

Coupled THM processes

- **Effect of multiphase CO2-brine flow**
- **Effect of fault geology (length, shape,…)**
- **Effects of Poro-elasticity and Effective stress variations on Mohr-Coulomb failure**
- **Effect of pressure diffusion on induced seismicity**
- More advanced fault rupture constitutive laws **related to rates**
	- Weakening *(and mechanical instability = seismicity)*
	- Permeability change
- Effect of $CO₂$ properties on fault rupture evolution

Effect of fault geology (length, shape,…)

Case of an impermeable fault

Less rupture on a small fault that can be by-passed !

Storage reservoir Pore pressure

Effects of Poro-elasticity and Effective stress variations on Mohr-Coulomb failure

We find that the poroelastic effect is limiting the fault rupture

Our models at project and Basin scales generalize previous studies

Effect of multiphase CO₂-brine flow

When enough CO₂ is stored in the system there is a pressure relaxation that can "stop" faults rupture

But when $CO₂$ is "touching" the fault, some complex HM responses are observed **That could cause fault instability**

9

Importance of Injection scenarios

High rates early followed by smaller rates leads to the Most rupture and seismicity

Well placement vs fault location

Example in a normal faulting regime Results may change in a strike slip regime

Effect of pore pressure rate and poroelastic stressing on deep-basement induced seismicity

- Using the large-scale 3D poroelastic model
- Oklahoma seismic catalogue as an analogue
- Empirical correlations between the seismicity rate and the basement pressure variation in the seismic zone

Modified Gutenberg-Richter law for injection induced earthquakes

$$
\boxed{R_{\geq M}(\vec{r},t) = 10^{a(\vec{r},t)-bM} = [\Delta P_p(\vec{r},t)]^2 \frac{10^{\sum\limits_{\mathsf{seimo}}(\vec{r})-bM}}{\sum\limits_{\mathsf{deimo}}(\mathsf{M}_p(\vec{r},t))}}}
$$

Langenbruch, Weingarten and Zoback, 2018 **Nature Communications**

Applying optimization algorithms

Example case: Simultaneous injections from two project areas. Injection duration=20 y and injection rates are optimized to maximize injection mass and prevent fault slip and fracturing.

13

Must use adaptive management strategy !

Example of a third project starting

in the previously optimized basin area with projects 1 and 2

Potential management approaches to use at basin scale

2 – Relocate project 3

Strategic well placement (e.g., allow Project 3 to inject symmetrically from the fault or move project to fault tip

3 – Drill or use existing wells *To minimize pressure & stress changes via brine extraction*

Project

 -20000

 $x(m)$

?

30000

20000

 \sum_{λ}^{10000}

 -10000

 -20000

 $\boldsymbol{0}$

 Δ P (MPa)

?

4.5 6.5 8.5 10.5

Accomplishments To Date

Strengthening processes

Amount of stored $CO₂$

Amount of poroelastic coupling

More Poroelasticity = More CO₂ stored and potentially less fault failure

Poroelasticity effect may be High in the basin porous layers Low in the basement

Weakening processes

1 - Changes in Background rates! Pressure rate **– strain rate**

Higher pressure rates = More fault failure and seismicity

2 - $CO₂$ touching an activated fault ?

Synergy Opportunities

1 - Field scale MtTerri experiments (FWP-FP00013650) Transfer knowledge on fault hydromechanical weakening/leakage

2 - One High Level Focus is to define NEW Monitoring Parameters in Optimization

Coupled Pressure and Strain **rate** – Seismicity (rate, location, Mag)

The Perspective would be to TEST these NEW Monitoring Parameters in a real Basin-scale field site

- CETPartnership 2023 proposal submitted with NORCE Norwegian Research AS Access to Horda platform multistorage Hub datasets
- **Need for a validation borehole!**

Backup Slides

Tight Integration Between Geomechanics and Basin-Scale Models

Appendix