Bridging the Gap: Coupled Poromechanical and Earthquake Simulation to Model Induced Seismicity

PI: Matteo Cusini

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344

Budget & research team

Project timeline: October 2023 – September 2025 Budget: 300k (Y1) - **500k (Y2)** - 500k (Y3)

LLNL Research team:

- Matteo Cusini
- Kayla Kroll
- Nicola Castelletto
- Randy Settgast
- Joshua White

Collaborators (unfunded):

- Vidar Stiernström (Stanford)
- Matteo Frigo (Stanford)
- Eric Dunham (Stanford)

High-resolution storage estimates that more critically assess the integrity of individual storage complexes in terms of their ability to sequester CO₂ without significant leakage [..] and **avoid triggering of injection-induced seismicity** will eventually be required.

Getting to Neutral. Chapter 6, page 87, 2020.

We need models to understand induced seismicity!

- How can we quantify hazards at new site?
- What data are useful to reduce uncertainty?
- Which type of data is most important to quantify induced seismicity hazards?
- Are there effective management strategies?

Models of induced seismicity

Reduced order models (Orion)

High fidelity models (this project)

- Provide information about the seismicity rate
- Low computational cost
- Can be used by non-experts

- Provide event locations and magnitudes
- Computationally expensive
- Necessary to train/validate ROM

Key ingredients

Objectives and subtasks

Objective: develop, within the open-source **GEOS** simulation framework, a high-fidelity coupled poromechanical and earthquake rupture simulator.

Subtask 1 – Quasi-static fault stability analysis capability

• **Deliverable:** quasi-static fault modeling capability in the open-source GEOS framework.

Subtask 2 – Quasi-dynamic fault modeling capability

• **Deliverable:** a coupled poromechanics-earthquake (HM+E) simulation capability in the opensource GEOS framework.

Subtask 3 – Demonstration of the applicability of the developed framework

• **Deliverable**: a demonstration of the applicability of the developed capabilities through the modeling of induced-seismicity at a real GCS site.

High-fidelity poromechanics & ROM for seismicity

- Earthquake rate equations are derived from rate-state friction
- We assume we know faults orientation

$$\dot{R} = \frac{1}{t_a} \hat{R} \left(t_a \dot{g}(t) - \hat{R} \right) \qquad t_a = \frac{a\sigma_0}{\dot{\tau_r}}$$
$$\dot{g}(t) = \frac{\dot{\tau}(t)\sigma(t) - \tau(t)\dot{\sigma}(t)}{a\sigma(t)}$$

•	σ and $ au$ extracted
	from a
	poromechanics
	simulation.

Provides a seismicity rate with no information about location and magnitude of the events

Otaniemi Geothermal field, Finland

$$\sigma_0 = 155 \text{MPa} \qquad k = 8 \cdot 10^{-16} \text{m}^2$$

$$p_0 = 45 \text{MPa} \qquad a = 6 \cdot 10^{-5}$$

$$\tau_0 = 0.6 \bar{\sigma}_0 = 66 \text{MPa} \qquad \dot{\tau}_r = 1 \text{kPa/yr}$$

Two-way coupled poromechanics & earthquake model

Step 1: explicitly represent faults in the poromechanical model

	$ \begin{array}{c} m \\ \mathcal{F} \\ n_{\mathcal{B}} \\ A) \end{array} $	$\mathcal{F}^{n=n^{+}} \mathcal{F}$ $\mathcal{F}^{-} \mathcal{F}^{+}$ (B)
$-\nabla \cdot (\boldsymbol{\sigma}' - bp1) - \rho \boldsymbol{g} = 0$	on $\mathcal{M} imes (0, T]$	Linear momentum balance
$\dot{m}_{\pi}^{m} + \nabla \cdot (\rho_{\pi} \boldsymbol{\nu}_{\pi}^{m}) - q_{\pi}^{fm} - q_{\pi}^{m} = 0$	on $\mathcal{M} imes (0, \pmb{T}]$	Matrix mass balance
$\llbracket \boldsymbol{\sigma} \rrbracket \cdot \boldsymbol{n} = 0$	on 货 × (0 , <i>T</i>]	Stress continuity across the fracture
$\dot{m}_{\pi}^{f} + \nabla \cdot \left(\rho_{\pi} \boldsymbol{v}_{\pi}^{f}\right) - q_{\pi}^{mf} - q_{\pi}^{f} = 0$	on $\mathfrak{F} imes (0, \pmb{T}]$	Fault mass balance

Contact constraints & friction law

Normal contact conditions			
$\lambda_n = \boldsymbol{\lambda} \cdot \boldsymbol{n} \leq 0$	on $\mathfrak{F} imes (0, \pmb{T}]$		
$g_n = \llbracket \boldsymbol{u} rbracket \cdot \boldsymbol{n} \ge \boldsymbol{0}$	on $\mathfrak{F} imes ({f 0}, {\it T}]$		
$\lambda_n g_n = 0$	on $\mathfrak{F} imes (0, \pmb{T}]$		

Coulomb friction law				
$\ \boldsymbol{\lambda}_t\ _2 - \tau_{max} = 0$	on $\mathfrak{F} imes (0, T]$			
$\dot{g}_t \dot{t}_t - \tau_{max} \ \dot{\boldsymbol{g}}_t \ _2 = \boldsymbol{0}$	on $\mathfrak{F} imes (0, T]$			

Not suited to model seismicity!

Rate- and state-dependent friction

Friction is a function of slip velocity (V) and state variable (θ):

$$F = f_0 + a \ln\left(\frac{V}{V_0}\right) + b \ln\left(\frac{V_0\theta}{D_c}\right)$$

$$\frac{\partial\theta}{\partial t} = -\frac{V\theta}{D_c} \left[\ln\left(\frac{V\theta}{D_c}\right)\right] \qquad \text{slip law [Ruina, 1983]}$$

At Steady-state
$$\left(\frac{\partial \theta}{\partial t} = 0\right)$$
:
 $f_{ss} = f_0 + (a - b) \ln\left(\frac{V}{V_0}\right)$

 $\begin{cases} a-b < 0 & \text{steady-state velocity weaking} \\ a-b > 0 & \text{steady-state velocity strengthening} \end{cases}$

[[]modified after Y. Huang et al, Earthq. Research Adv. (2023)]

OD earthquake model: spring-slider system [1/3]

 ηV is the radiation-damping term where η is the shear impedance

$\tau_0 + \hat{\tau} \cdot t - K\delta - \eta V - f(\theta, V)\lambda_n = 0$	Force balance
$\frac{\partial \delta}{\partial t} - V = 0$	Slip evolution
$\frac{\partial\theta}{\partial t} + G(V,\theta) = 0$	Slip/Aging law

OD earthquake model: spring-slider system [2/3]

We can discretize with Euler-backward*...

$$\begin{vmatrix} r_1(\theta, V) &= \tau_n + \hat{\tau} \cdot \Delta t - K(\delta_n + V\Delta t) - \eta V - f(\theta, V)\lambda_n = 0 \\ r_2(\theta, V) &= \frac{\theta - \theta_n}{\Delta t} + G(\theta, V) = 0 \end{vmatrix}$$

...and solve with the Newton-Raphson method

*we have also explored other time-integrators

OD earthquake model: spring-slider system [3/3]

The peaks are characteristic events (i.e., quakes)

Coupled (poro)mechanics & quasi-dynamic earthquake model

Results in the following saddle-point problem

$$\begin{bmatrix} K_{uu} & C_{u\lambda} \\ C_{\lambda u} & 0 \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = - \begin{bmatrix} r_u \\ r_\lambda \end{bmatrix}$$

Results in the following saddle-point problem

Normal traction

Results in the following saddle-point problem

Normal traction

Results in the following saddle-point problem

$$\begin{bmatrix} K_{uu} & C_{u\lambda} \\ C_{\lambda u} & A_{stab} \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = - \begin{bmatrix} r_u \\ r_\lambda \end{bmatrix}$$

The stabilization matrix affects the solution and it is only exact for hexahedral elements.

Results in the following saddle-point problem

 $\begin{bmatrix} K_{uu} & C_{u\lambda} \\ C_{\lambda u} & A_{stab} \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = - \begin{bmatrix} r_u \\ r_\lambda \end{bmatrix}$

The stabilization matrix affects the solution and it is only exact for hexahedral elements.

 $\begin{bmatrix} A_{bb} & A_{bu} & A_{bt} \\ A_{ub} & A_{uu} & A_{ut} \\ A_{tb} & A_{tu} & 0 \end{bmatrix} \begin{bmatrix} u_b \\ u \\ \lambda \end{bmatrix} = - \begin{bmatrix} r_b \\ r_u \\ r_\lambda \end{bmatrix}$

- Does not affect the solution
- It is generic for all element types (as long as we can write the bubble)
- Can be statically condensed

Results in the following saddle-point problem

$$\begin{bmatrix} K_{uu} & C_{u\lambda} \\ C_{\lambda u} & A_{stab} \end{bmatrix} \begin{bmatrix} u \\ \lambda \end{bmatrix} = - \begin{bmatrix} r_u \\ r_\lambda \end{bmatrix}$$

The stabilization matrix affects the solution and it is only exact for hexahedral elements.

Year 1: subtasks & milestones overview

Subtask 1 – Quasistatic fault stability analysis capability

- 1.1 Implementation of a conforming discretization approach to model faults in a poroelastic medium.
- 1.2 Implementation of constitutive laws that account for the dependency of fault permeability on stressing conditions.

Milestone 1.1: Poromechanical solver with Lagrange multiplierbased contact enforcement implemented in GEOS and validated with numerical examples (Completed).

Year 2: subtasks & milestones overview

Subtask 2 – Quasidynamic fault modeling capability

- 2.1 –*Implementation of a rate- and state-dependent friction model.* We enrich the framework devised in subtask 1.1 with a rate- and state-dependent friction model.
- 2.2 Development of a prototype quasi-dynamic earthquake rupture modeling capability. We will develop a prototype earthquake rupture simulator and implement it in the GEOS framework.
- 2.3: Development of a strategy to couple poromechanics with a quasi-dynamic earthquake rupture physics.

Milestone 2.1: Rate- and state- friction model implemented and validated. [Fully prototyped & GEOS implementation ongoing]
Milestone 2.2: Prototype quasi-dynamic earthquake rupture modeling capability completed. [80%]
Milestone 2.3: Prototype coupled poromechanics and quasi-dynamic earthquake rupture modeling capability completed. [50%]

Thank you

UL Lawrence Livermore National Laboratory

Funding from Office of Fossil Energy and Carbon Management FEW0287