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High-resolution storage estimates that more critically assess the integrity of
individual storage complexes in terms of their ability to sequester CO, without

significant leakage [..] and avoid triggering of injection-induced seismicity

will eventually be required.

Getting to Neutral. Chapter 6, page 87, 2020.

We need models to understand induced seismicity!

* How can we quantify hazards at new site?

\o.
>/, 2\ * What data are useful to reduce uncertainty?
vV y *  Which type of data is most important to
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— > quantify induced seismicity hazards?

* Arethere effective management strategies?



Models of induced seismicity

Reduced order models High fidelity models
(Orion) (this project)

* Provide event locations and magnitudes
 Computationally expensive
* Necessary to train/validate ROM

* Provide information about the seismicity rate
* Low computational cost
 Canbe used by non-experts



Key ingredients

A poromechanics An earthquake model
simulation module
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[Seagall and Lu (2015)]



Objectives and subtasks

Objective: develop, within the open-source GEOS simulation framework, a high-fidelity coupled
poromechanical and earthquake rupture simulator.

Subtask 1 — Quasi-static fault stability analysis capability

e Deliverable: quasi-static fault modeling capability in the open-source GEOS framework.

Subtask 2 — Quasi-dynamic fault modeling capability

e Deliverable: a coupled poromechanics-earthquake (HM+E) simulation capability in the open-
source GEOS framework.

Subtask 3 - Demonstration of the applicability of the developed framework

e Deliverable: a demonstration of the applicability of the developed capabilities through the modeling

of induced-seismicity at a real GCS site.




CO, storage simulation with GEOS

Geological Model GEOS simulation model

CO2 injector
1.5 Mtpa for 25 years

CO2 Saturation

Displacements

Figure: GEOS simulations of the Northern Lights storage project
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High-fidelity poromechanics & ROM for seismicity

- Earthquake rate equations are derived from rate-state friction \\\\

- We assume we know faults orientation s

R= lﬁ(tag'(t) — R) t, = 4% « o and 7 extracted
fa tr from a

, T(t)a(t) —1(t)a(t) poromechanics

9() = ao(t) simulation.

» Provides a seismicity rate with no information about
location and magnitude of the events

[Dieterich, (1994)]



Otaniemi Geothermal field, Finland
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Two-way coupled poromechanics & earthquake model

Step 1: explicitly represent faults in the poromechanical model

-------------------------------------------

-V - (6' — bpl) — pg = on M x (0,T] Linear momentum balance
mt+V-(p; v) — qf;m —qgt =0 on M X (0,T] Matrix mass balance
[o] n=0 on & X (0, T] Stress continuity across the fracture

m,]; +V. (pn v,];) — qglf — q,]; =0 on g X (0,T] Fault mass balance
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Contact constraints & friction law

Normal contact conditions
& It
A, =2-n<0 ong X (0, T] / P
gn=[u] - n=0 onE x (0,T] \% %
Angn =0 ong X (0,T] In
Tf 4

Tmax = B
Coulomb friction law fn
”Atllz — Tmax = 0 ong x (0,T]
Jite — Tmaxllgell, = 0 ong X (0,T] >

I Not suited to model seismicity!




Rate- and state-dependent friction

A
T
Friction is a function of slip velocity (V) and state !
variable (0): a F
Tmax = JAn
f =" +aln<7) +b1n( )
>
9[()] lip law [Ruina, 1983 ‘
— slip law [Ruina,
at D plaw] ] .
f Slow Fast
960 .\, bin(V/IV,
At Steady-state (E = O) aln(V/V) Velocity strengthening ( )
|74
fo=fo+(a —Db) ln( ) I N pabmovy |
4
a—b<0 steady—state velocity weaking e
a—b >0 steady—state velocity strengthening u>

[modified after Y. Huang et al, Earthq. Research Adv. (2023)]
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0D earthquake model: spring-slider system [1/3]

Quasi-dynamic

approximation
=i
At)=10+T-t—K§ AnV |

nV is the radiation-damping term where 1 is the shear impedance

o+ttt —K§ —nV — £(8,V)A, =0

85 _
=-V=0

26 B
=+ G0 =0

Force balance

Slip evolution

Slip/Aging law

13



0D earthquake model: spring-slider system [2/3]

We can discretize with Euler-backward*...

rn@0,V)=1t,+ 7-At — K(6, + VAt) —nV — f(6,V)A, =0
r,(0,V) = ——+ G(6,V) = 0

n

At

...and solve with the Newton-Raphson method

*we have also explored other time-integrators
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0D earthquake model: spring-slider system [3/3]
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Coupled (poro)mechanics & quasi-dynamic earthquake model

Start time-step

GEOS poromechanics

" End time-step

]

solver
Evaluate residual Assemble LS
Solve LS
Evaluate residual Converged?
Yes
opandt
A
Solve Rate- and X

. tate- ti

Accurate tractions of the fault surfaces are Stater saratons slip

crucial!
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Discretization of explicitly represented faults
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Results in the following saddle-point
problem
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Discretization of explicitly represented faults

E ..?........3.....'.? ....... 7' ° E K E ..?--- ..... s.....'.? ....... 7'
_".'....: ....... X XLTTCIES [T & j‘.‘....: ....... X XTTTCIES [T
oo F RO . & 8o RO HE O .

: .’b.. ..... :.......’ ........ 7. ° - : .’j.. ..... :.......’ ........ 7.
..'.' ......... :5: ...... cenn p ..'.' ......... :53 ...... -

ol OQ U ° A\

Results in the following saddle-point
problem

Normal traction

—@— Unstabilized LM
. — Reference

—20
—40 \
—60

—80

An [MPa]

y [m]



Discretization of explicitly represented faults
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Discretization of explicitly represented faults
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[ 2 == ]

The stabilization matrix affects the solution and it is only
exact for hexahedral elements.



Discretization of explicitly represented faults
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The stabilization matrix affects the solution and it is only
exact for hexahedral elements.

Ay A 0

Does not affect the solution

It is generic for all element types (as long
as we can write the bubble)

Can be statically condensed
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Discretization of explicitly represented faults
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Coupled (poro)mechanics and earthquake model

@ displacements Slip is prescribed as a
» @ double displacements .
® tractions b.c. to the mechanics

m/s)

Work in collaboration with Vidar Stiernstroem, Matteo Frigo, Eric Dunham, Nicola Castelletto
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Coupled (poro)mechanics and earthquake model
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Coupled (poro)mechanics and earthquake model
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Coupled (poro)mechanics and earthquake model

@ displacements Slip is prescribed as a
® double displacements .
® tractions b.c. to the mechanics
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Year 1: subtasks & milestones overview

Subtask 1 — Quasi- e 1.1 —Implementation of a conforming discretization approach to

. - model faults in a poroelastic medium.
static fault stab llty * 1.2 - Implementation of constitutive laws that account for the

ana lysis capa o] lity dependency of fault permeability on stressing conditions.

Milestone 1.1: Poromechanical solver with Lagrange multiplier-

based contact enforcement implemented in GEOS and validated with
numerical examples (Completed).
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Year 2: subtasks & milestones overview

S u bta s k 2 — Q u a S i - e 2.1 -Implementation of a rate- and state-dependent friction model. We enrich the framework devised in
subtask 1.1 with a rate- and state-dependent friction model.

d g f lt e 2.2 - Development of a prototype quasi-dynamic earthquake rupture modeling capability. We will
yn a m I C a u develop a prototype earthquake rupture simulator and implement it in the GEOS framework.
e 2.3: Development of a strategy to couple poromechanics with a quasi-dynamic earthquake rupture

modeling capability .

Milestone 2.1: Rate- and state- friction model implemented and
validated. [Fully prototyped & GEOS implementation ongoing]
Milestone 2.2: Prototype quasi-dynamic earthquake rupture

modeling capability completed. [80%]
Milestone 2.3: Prototype coupled poromechanics and quasi-
dynamic earthquake rupture modeling capability completed. [50%]
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