Storage Potential of Oil Reservoirs in the Central Gulf of Mexico

Jack C. Pashin, Oklahoma State University Benjamin Wernette, Southern States Energy Board

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory. Cost share and research support are provided by the Project Partners and an Advisory Committee.

Disclaimer

"This presentation is based upon work supported by the Department of Energy and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendations, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Offshore Partnership-Overview

 Establishing the knowledge base required for secure, long-term, large-scale, subseafloor storage of CO₂ with or without enhanced hydrocarbon recovery

Division of the SECARB Offshore and GoMCarb study areas. Figure courtesy of Advanced Resources International and modified by SSEB.

260 MMT CO₂e

Offshore Partnership-Overview

Subsurface characterization utilizing existing data – today's focus

Subsurface modeling informed by subsurface characterization

Identification of risks – legacy infrastructure

Infrastructure evaluation

Evaluation of legal and regulatory considerations

Outreach

Other Team Activities

1. Legal and Regulatory

Developing a conceptual flow diagram that includes legal and regulatory considerations for project developers

2. Infrastructure

Developing commercialization scenarios utilizing existing infrastructure focused on depleted oil and gas fields 3. Risk

Developing models to evaluate CO₂ pressure plume interaction with local structural features (e.g., salt diapirs)

Offshore Partnership-Student Participation

PhD

 Mohamed Abdelaal – storage capacity estimation

PhD

- Joshua Ademilola seismic interpretation and reservoir characterization
- Rupom Bhatterjee data analytics
- Justin Spears (graduated) mapping and seismic interpretation
 MSc
- Kodjo Botchway data analytics
- Xitong Hu (graduated) data analytics
- Seyi Sholanke (graduated) seismic interpretation

VIRGINIA TECH.

PhD

- Lars Koehn reservoir modeling
- Charlie Schlosser numerical modeling of faults

Undergraduate

Abdullah Alsawyan

Introduction

- What are key reservoir properties in the Central Gulf of Mexico?
- What are total storage resources in this region?

Objectives

- Geological Characterization based on 3D seismic, geophysical well logs, and reservoir data (Stratigraphy, sedimentation, structure, hydrodynamic analysis).
- Analyze reservoir properties, storage volumetrics, potential storage mechanisms, migration pathways, and
 reservoir integrity to develop geologic screening criteria.
- Understand temperature pressure regime and implications for geologic CO₂ storage and enhanced recovery.
- Determine regional storage resources using NETL static method.

SECARB: Offshore

SECARB: Offshore

Half Grabens and Salt Pillows, Ewing Bank shelfbreak

Diapiric Salt Bodies, Ewing Bank Shelfbreak

Mars-Ursa Minibasin Complex

Graded Sandstone Green Canyon 184 6827

Rippled, Convoluted Sandstone, GC 18

Convolute Mudstone Thunderhorse Field

Core diameter = 10 cm various sources **RB: Offshore**

Effective Porosity and Permeability

Relative Permeability Curves

SECARB: Offshore

Pliocene J1 and J2 reservoirs, Bullwinkle Platform, Green Canyon Block 65

What do relative permeability curves look like in a CO₂ storage system?

Miocene Hydrocarbon Reservoir Storage Resources

Pliocene Hydrocarbon Reservoir Storage Resources

Pleistocene Hydrocarbon Reservoir Storage Resources

Pleistocene (2.58–0.01 Ma)

SECARB: Offshore

Oil Reservoir Storage Resource by Protraction Area

Protraction Area	P ₁₀	P ₅₀	P ₉₀	P ₁₀ /km ²	P ₅₀ /km ²	P ₉₀ /km ²	
Bay Marchand	1,550,551,160	2,584,251,934	4,134,803,094	1,546,954	2,578,257	4,125,211	
Mississippi Canyon	772,977,200	1,288,295,334	2,061,272,534	2,950,562	4,917,603	7,868,165	
Green Canyon	609,044,686	1,015,074,477	1,624,119,163	2,580,931	4,301,552	6,882,484	
Eugene Island	442,215,285	737,025,474	1,179,240,759	683,548	1,139,246	1,822,794	
Ship Shoal	360,980,194	601,633,656	962,613,849	681,156	1,135,261	1,816,417	
South Marsh Island	314,062,852	523,438,087	837,500,939	1,121,755	1,869,591	2,991,346	
South Timbalier	281,013,480	468,355,799	749,369,279	741,527	1,235,879	1,977,407	
South Pass	233,262,718	388,771,197	622,033,915	960,016	1,600,026	2,560,042	
West Delta	221,518,888	369,198,147	590,717,035	590,771	984,618	1,575,388	
Grand Isle	210,521,967	350,869,944	561,391,911	997,825	1,663,041	<mark>2,660,866</mark>	
Walker Ridge	156,507,670	260,846,117	417,353,787	7,114,629	11,857,715	18,972,344	
Viosca Knoll	154,342,792	257,237,987	411,580,779	3,508,108	5,846,847	9,354,955	
Ewing Bank	75,777,570	126,295,949	202,073,519	1,287,939	2,146,565	3,434,504	
South Pelto	49,655,485	82,759,142	132,414,627	477,500	795,833	1,273,333	
Atwater Valley	11,381,638	18,969,397	30,351,036	1,264,741	2,107,902	3,372,643	
De Soto Canyon	4,198,783	163,136,727	261,018,763	1,049,791	1,749,651	2,799,442	
Main Pass	770,894	1,284,823	2,055,717	770,964	1,284,940	2,055,903	
Breton Sound	616,018	1,026,697	1,642,716	191,250	318,751	510,001	

 $P_{10} E = 15\%$ $P_{50} E = 25\%$ $P_{90} E = 40\%$

	5,449,399,280	9,238,470,889	14,781,553,422	
Shelf	610,511,311	1,017,518,851	1,628,030,162	
Shelf	3,209,000,422	5,348,334,036	8,557,334,458	
ntal Slope	1.629.887.548	2.872.618.001	4.596.188.802	

P_{10,50,90}/km² values are averages for individual reservoir sands

SECARB: Offshore

 $G_{CO2} = Ah\phi(1-S_w)B\rho E$

Total

Eastern S

Western Continer

Oil Reservoir Storage Resource by Age

Series	Stage	P ₁₀	P ₅₀	P ₉₀	P ₁₀ /km ²	P ₅₀ /km²	P ₉₀ /km²
Pleistocene	Gelasian-Tarantian	204,078,297	340,130,494	544,208,791	624,149	1,040,249	1,664,398
Pliocene	Piacenzian	642,473,596	1,070,789,327	1,713,262,922	799,169	1,331,948	2,131,117
Pliocene	Zanclean	641,863,165	1,069,771,942	1,711,635,107	815,656	1,359,427	2,175,083
Miocene	Tortonian-Messinian	1,697,720,705	2,829,534,509	4,527,255,214	1,003,472	1,672,453	2,675,925
Miocene	Serravallian	396,408,492	660,680,819	1,057,089,311	3,848,975	6,414,958	10,263,932
Miocene	Langhian	48,148,914	80,248,190	128,397,104	3,439,519	5,732,532	9,172,052
Miocene	Burdigalian	50,810,357	84,683,929	135,494,287	5,646,106	9,410,177	15,056,283
Cenozoic undiff.		504,304,392	840,507,319	1,344,811,711	9,339,816	15,566,359	24,906,175
Cretaceous	Albian	1,570,657	2,617,761	4,188,418	1,570,799	2,617,998	4,188,797

 $P_{10} E = 15\%$ $P_{50} E = 25\%$

P₉₀ E = 40%

P_{10,50,90}/km² values are averages for individual reservoir sands

Observations

- Shelf and slope have numerous storage/enhanced recovery options.
- Abundant high-quality reservoirs and sealing strata.
- Analytical criteria include many aspects of depositional style, structural style, hydrodynamics, geothermics, and routine reservoir properties.
- Fluid saturation and relative permeability important considerations-gas mobility higher in oil than water.
- Broad range of pressure-temperature conditions creates broad CO₂ phase and density envelope.
- Storage resource in oil reservoirs between 5.5 and 14.8 Gt.
- Greatest potential in western shelf and deep water.
- Bulk of storage in Miocene-Pliocene section; different zones prospective in different regions.

