Corrosion of Carbon Steel in Dense Phase CO₂ with Impurities

CO₂ Transport and Storage MYRP (1025033)

Ömer Doğan

FECM/NETL Carbon Management Research Project Review August 5-9, 2024

Disclaimer

This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

This work is performed in support of the U.S. Department of Energy's (DOE) Office of Fossil Energy and Carbon Management's Carbon Transport and Storage Program and executed through NETL Research and Innovation Center's Carbon Transport and Storage MYRP (MYRP#1025033).

Team

- Ömer Doğan
- Zineb Belarbi
- MacKenzie Mark-Moser, Technical Portfolio Lead
- Ale Hakala, Senior Fellow, CTS MYRP Lead
- Mark McKoy, Technology Manager

- Neeraj Thirumalai
- Joe Jun
- Fang Cao

- Ramgo Thodla
- Jose Vera

- Bob Smith, Program Manager
- Kevin Dooley, Program Manager

CO₂ Phase Diagram

These pipelines operate in the "dense phase" mode at ambient temperature and high pressure.

Pure CO₂ pressure-temperature diagram

However, impurities in the CO₂ stream can alter the phase diagram depending on the concentration and environmental factors.

if the critical temperature of the impurities is above that of CO_2 (e.g., H_2S and NO_2), the 2-phase region will be found below the critical temperature of the pure CO_2 and vice versa.

The presence of impurities will affect the solubility limit of water

Therefore, the corrosion behavior of carbon steel

Impurities in CO₂ streams

Recommended Composition Limits for CO₂ Streams

						Saline l	Reservoir	Saline Co	O ₂ and H ₂ S	
		Carbon Steel Pipeline		EOR		Seque	estration	Cosequ	estration	
			Literature		Literature		Literature		Literature	
Component	Unit ^a	Concept	Range	Concept	Range	Concept	Range	Concept	Range	
CO_2	vol%	95	90–99.8	95	90–99.8	95	90-99.8	95	20-99.0	
H ₂ O	ppmw ^c	300	20-650	300	20-650	300	20-650	300	20-650	
N ₂	vol%	4	0.01-7	1	0.02-2	4	0.01-7	4	0.01-7	
O ₂	vol%	4	0.01–4	0.01	0.001-1.3	4	0.01–4	4	0.01–4	
Ar	vol%	4	0.01-4	1	0.01-1	4	0.01-4	4	0.01-4	
CH_4	vol%	4	0.01–4	1	0.01 - 2	4	0.01–4	4	0.01–4	
H_2	vol%	4	0.01–4	1	0.01-1	4	0.01–4	4	0.01–4	
60	d	25	10 5000	25	10 5000	25	10.5000	25	10 5000	
CO	ppmv"	35	10-5000	35	10-5000	35	10-5000	35	10-5000	^b Immediately dangerous to life and health
IL C		0.01	0.002 1.2	0.01	0.002 1.2	0.01	0.002 1.2	75	10.77	^c Parts per million by weight
H ₂ S	VOI%	0.01	0.002-1.3	0.01	0.002-1.3	0.01	0.002-1.3	/5	10-77	^d Parts per million by volume.
80		100	10 50 000	100	10 50 000	100	10 50 000	100	10 50 000	^e Not enough information.
502	ppmv	100	10-30,000	100	10-30,000	100	10-30,000	100	10-30,000	
NO	2222	100	20.2500	100	20.2500	100	20.2500	100	20.2500	
NO _x	ppmv	100	20-2300	100	20-2500	100	20-2500	100	20-2500	Shirley, Pamela, and Myles, Paul. Quality
										Guidelines for Energy System Studies: CO2
NH.	nnmy	50	0-50	50	0-50	50	0-50	50	0-50	Impurity Design Parameters. United States: N
1113	ppmv	50	0-30	50	0-30	50	0-30	50	0-30	p., 2019. Web. doi:10.21/2/1566//1.
				1		L				1

Water solubility in CO₂

Amount of water that can be contained in CO_2 as a function of pressure and temperature

1.E+03 1.E+04 1.E+03 1.E+02 1.E+02 1.E+02 1.0 1.00 1.00 1.00 1.00 1.00

R. Wiebe, J. Gaddy, J. Am. Chem. Soc. 3, (1941):p. 475. K.Y. Song, SPE Paper No. 18583 (Houston, TX: SPE International, 1988)

K.Y. Song, R. Kobayashi, SPE Formation Evaluation (1987) :p. 500. M. B. King, A. Mubarak, J. D. Kim, T. R. Bott, J. Supercrit. Fluids 5, (1992) :p. 296

> Water solubility in pure CO_2 and in a CO_2 -CH₄ mixture at 25°C

Xiang et al., State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models, Corrosion Engineering, Science and Technology, 52:7, 485-509,

NATIONAL <mark>ENERGY</mark> TECHNOLOGY LABORATORY

Internal corrosion of pipeline steel

Impact of impurities on phase boundaries and reactions in CO_2 and corrosion of carbon steel

Nesic et al. Ohio University

Corrosion in dense phase CO_2 in the presence of water and other impurities

- Investigate the effect of impurities (e.g., CO, O₂, H₂, NO_x, SO_x) on the corrosion of pipeline carbon steel under dense phase CO₂ in electrochemical and immersion autoclaves using weight loss and electrochemical methods.
- The team will investigate improving the test setup by adding capabilities to continuously or periodically measure impurity content in the autoclaves, injecting impurities to replenish those consumed in corrosion reactions, and detecting acid dropout.
- The post-exposure analysis of the coupons will characterize corrosion mechanisms, including localized corrosion and corrosion products, using SEM, EDS, XRD, and Kelvin probe.

Corrosion studies in dense phase CO₂ with impurities

Electrochemical reaction autoclaves

Operational conditions

Autoclave made of Hastelloy 276 with 3 electrode configuration.

- For up to 5000 psi
- Temperature: 25°C to 300°C
- Available gases:
 - SO₂ 12%+O₂ 23.5%+CO₂ ; SO₂ 12%+CO₂ ; H₂S 4%+CO₂
 - CO₂; O₂+CO₂
 - H₂, N₂, Ar
- Rotation speed up to 600 rpm (1.25 m/s, Re=15611 at 40°C)
- High-temperature and high-pressure pH probe
 - High Pressure ZrO₂-based pH probe (85 To 250 °C; for up to 4000 psi)
 - High Pressure Glass-based pH Probe (2 To 80 °C ; 0 to 3000 psi)

Immersion autoclaves

Operational conditions

- Autoclave made of Hastelloy 276; Ni alloys; Stainless steel.
- For up to 5000 psi
- Temperature: 25°C to 250°C
- Available gases:
 - SO₂ 12%+O₂ 23.5%+CO₂ ; SO₂ 12%+CO₂ ; H₂S 4%+CO₂
 - CO₂; O₂+CO₂
 - N₂, Ar
- Rotation speed up to 600 rpm (1.25 m/s, Re=15611 at 40°C)
- In-situ measurements of ions concentration (Fe²⁺, Cr²⁺, ...)
- Gas and liquid phase sample holders

- advanced characterization and microanalysis of selected samples
- donate carbon steel materials for corrosion testing at NETL

- contribute to the discussion of experiments design/conditions and share any relevant experience and corrosion testing results with NETL
- conduct complementary autoclave corrosion tests of dense phase CO2 with impurities

- perform corrosion tests under varying conditions to characterize the effect of water drop out during operational upsets
- investigate the impact of deposits, left on the steel surface after water dissolution in sCO2, on the ability to retain water and sustain corrosion under hygroscopic conditions

Project Timeline

Evaluation of the risk of corrosion in dense phase CO_2 in the presence of aqueous/acid phase (continuous or droplets) and other impurities

Tasks	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Literature review												
Establish test methodologies and obtain steel samples												
Determine general corrosion rates of carbon steel in aqueous/acid phase with SOx and NOx												
Determine general corrosion rates of carbon steel in aqueous/acid phase with additional impurities												
Corrosion mechanisms of select steels												
Project kick-off and progress meetings												

Project Kick-off: June 14, 2024

Any Questions?

Ömer Doğan

Technical Portfolio Lead Advanced Energy Materials Structural Materials Team Office: (541) 967-5858 Email: omer.dogan@netl.doe.gov

NETL RESOURCES

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologyLaboratory

