

SimCCS: Development and Applications

Bailian Chen Earth and Environmental Sciences Division

August 7th, 2024

LA-UR-24-27873

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

SimCCS: Determines Costs and Optimized Transport Routing by Integrating Factors Across the CCS Value Chain

Publicly available @ https://simccs.lanl.gov/

• NICO₂LE

- Understand commercial-scale capture opportunities
- Geodatabase: Source locations, CO₂ streams, & capture costs

• SCO₂T

- Rapidly calculate realistic injection and storage costs

CostMAP

- Identify likely corridors
- Develop candidate pipeline routes for SimCCS optimization engine

SimCCS

 Determine optimal regional/national network of CO₂ sources, CO₂ sinks, and CO₂ transport pipeline that meet desired CCS goals

Address Emerging CCUS Infrastructure Deployment Challenges

National-, regional-, and commercial-scale deployment

Phased modeling to account for dynamic nature of CO_2 sources

Potential utilization of existing CO_2 pipelines and ROWs

Onshore and offshore transport and storage

Multi-modal transport modeling: pipelines, trucks, and rails

Disadvantaged communities and environmentally sensitive areas

User Interface, Inputs & Outputs

User Interface, Inputs & Outputs

User Interface, Inputs & Outputs

Inputs

• Locations of CO₂ sources and sinks, capture amounts & costs, storage resources & costs

Outputs

- <u>Pipeline:</u> Optimal transport network, pipeline lengths, diameters, flow rates, costs, etc.
- <u>Rail/Truck:</u> CAPEX, OPEX, FINEX at different stages

8/26/2024 6

SimCCS Applications

- Support infrastructure modeling
 - National scale CCS pipeline network modeling DOE FECM
 - Power Plant CO₂ pipeline analysis DOE Office of Policy & EPA
 - Regional CCUS partnership (CUSP, SECARB-USA, MRCI)
 - I-WEST Energy Transition initiative
 - CarbonSAFE initiative

 LANL is providing technical support to industry, academia, and government stakeholders

Example 1: Multi-modal Transport

• CO₂ source

- Apache Station coal-fired power plant
- Located in Cochise, Arizona
- ~1.0 million tonnes per year
- Unlikely to be retired by 2040

• CO₂ storage

- San Juan Basin in New Mexico

Rail availability

- 203 miles rail owned by BNSF railway
- The largest freight railroad in the United States
- One of six North American Class I railroads
- 33,400 miles of track in 28 states, and over 8,000 locomotives

Hypothetical CO₂ Transport Designs

Pipeline

 ~176.5 miles of 8-inch pipeline needs to be constructed

Multi-modal (Rail + pipeline)

- · 203 miles of BNSF rail
- ~27.8 miles of 8-inch pipeline needs to be constructed

Rail Transport Cost – L ×						
Rail Transport Stage Name	Cost (\$/tonne CO2)	Cost Percentage (%)				
Stage 1: liquefaction	3.640	12.628				
Stage 2: pre-load storage	0.796	2.763				
Stage 3: CO2 loading	0.261	0.907				
Stage 4: Rail Cost	22.529	78.168				
Stage 5: CO2 unloading	0.253	0.877				
Stage 6: post-load storage	0.770	2.672				
Stage 7: CO2 gasification	0.572	1.984				
Total	28.821	100.0				

• While pipeline transport is generally more cost-effective, multimodal transport can be advantageous in scenarios where obtaining interstate pipeline construction permits is challenging.

Example 2: Power Sector CO₂ Pipeline Analysis

- **Background**: Policy makers need to understand the size of a CO₂ pipeline system needed to address significant portions of power sector emissions.
- Objective: Estimate the size and investment in the CO₂ pipeline network and storage sites necessary to meet proposed EPA power sector greenhouse gas emissions rules to inform feasibility assessment.
- Sponsor: DOE-Office of Policy

Scenario 1: All Coal Units with No Retirement Dates

206 units 396 MMT/year

Annual captured (Ovolumes (MMT)) 0 -1 2 -3 0 -3 -4 0 -5 -6 0 -7

Scenario 2: Coal Units Unlikely to Retire by 2040

99 units 229 MMT/year

Chen, B., Sun, X., Ma, Z., Velasco Lozano, M., de Figueiredo, M., & Donohoo-Vallett, P. (2024). *CO*₂ *PIPELINE ANALYSIS FOR EXISTING COAL-FIRED POWER PLANTS* (No. LA-UR-24-23321). Los Alamos National Laboratory (LANL), Los Alamos, NM.

Scenario 2 – Case 1: Minimize Cost

• Existing CO₂ pipeline length in miles: 5,300

- Total new CO₂ pipeline length in miles: 5,661.3
- Total number of state crossing pipelines: 34

Scenario 2 – Case 2: Minimize Length

Existing CO₂ pipeline length in miles: 5,300

- Total new CO₂ pipeline length in miles: 4,658.0
- Total number of state crossing pipelines: 27

•

Scenario 2 – Case 3: Minimize State Crossing

• Existing CO₂ pipeline length in miles: 5,300

- Total new CO₂ pipeline length in miles: 5,990.0
- Total number of state crossing pipelines: 17

Scenario 2: Pipeline Size and Length

Scenario-Case	# of Coal Units	Total New Pipeline Length (miles)	% Segments < 25 miles	% Segments < 100 miles	# of State Crossings
S2C1 – Min cost	99	5,661.3	44.90%	77.55%	34
S2C2 – Min length	99	4,658.0	52.58%	85.57%	27
S2C3 – Min state crossing	99	5,990.0	38.46%	74.73%	17

Key Takeaways

- SimCCS demonstrates to be an effective toolset to support decisionmaking in the deployment of CCS transport infrastructure.
- Modeling of multi-modal transport, including pipeline, rail, truck, barge/ship, will be fully functional by the end of this calendar year.
- Expanding tool for transport safety and risk assessment.

Example of Potential Impact Radius estimate using SimCCS if a leak event happens

Thank you! bailianchen@lanl.gov

Scenario 1 – Case 1: Minimize Cost

- Total new CO₂ pipeline length in miles: 8611.5
- Total number of state crossing pipelines: 54

Scenario 1 – Case 2: Minimize Length

- Total new CO₂ pipeline length in miles: 7,188.6
- Total number of state crossing pipelines: 42

Scenario 1: Pipeline Size and Length

Scenario-Case	# of Coal Units	Total New Pipeline Length (miles)	% Segments < 25 miles	% Segments < 100 miles	# of State Crossings
S1C1 – Min cost	206	8,611.5	42.59%	82.72%	54
S1C2 – Min length	206	7,188.6	51.92%	86.54%	42

