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Risk of Cap Rock Integrity and Induced 
Seismicity for CCS Projects
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Rutqvist, 2012

• Cap rocks are typically low-permeability 

shales. 

• Deformation in shale formations can occur 

without causing seismic activity due to the 

presence of ductile rocks. 

• Monitoring for microseismic activity may not 

be effective for assessing the integrity of 

caprocks in CO2 storage (CSS) reservoirs. 

• Overburden pressure and chemical 

monitoring can only detect CO2 leakage after 

it has already occurred.

Is there a monitoring method to detect cap rock and 

reservoir fracture deformation before overburden leakage?



Distributed Fiber-Optic Sensing

Distributed Temperature Sensing (DTS)

Distributed Acoustic Sensing (DAS)

Distributed Strain Sensing (DSS)

 Distance: up to 8 km

 Spatial resolution: 0.2 m

 Sampling interval: 30 s

 Sensitivity: 0.1 𝜇𝜀



Borehole Cable Deployment
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Vertical Well DSS Signal vs. Simulation
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• Single fracture

• Fracture upper tip location grows continuously

Srinivasan et al., SPE-214690-PA



Aseismic Deformation Observed in Shale

Deformation in shale formation can be aseismic due to ductile rocks →

Microseismic monitoring may be inefficient for caprock integrity monitoring 

for CSS reservoirs!



Problem Statement

• Can we observe aseismic 
deformation induced strain 
change using DSS?

• Using strain change observed 
along monitor well(s), how well 
can we constrain the fracture 
location, geometry, and 
deformation?

• 10 degrees of freedom:
• Location: x, y, z

• Geometry: L, H, Strike, Dip

• Deformation: W, S1, S2
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DSS Detection Threshold (0.1 𝜇𝜀 sensitivity)
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Rutqvist, 2012

DFOS monitor well
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Strike-shear Fracture

Monitor well in the overburden can 

detect fracture aseismic deformation 

in caprocks, allowing early warnings 

and mitigations.

An inversion algorithm is required to 

interpret the strain measurements.

Synthetic Strain Response
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Non-linear and Non-uniqueness 
Inversion Problem: Single Vertical Well
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Generated 1 million random initial models, followed 

by gradient decent inversion. 

52,116 final models with errors smaller than 5% 

were found using 1050 CPU hours.

Non-uniqueness due to the following trade-offs:

• Single component measurements (azimuth)

• Distance/fracture size/deformation value
Error < 5%

- 52,116 fractures
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Two Vertical Wells
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Uncertainty of azimuth is improved. 

Trade-off between distance and 

fracture size still exists.

Error < 5%

- 367 fractures
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L-shape Monitor well
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• Azimuth uncertainty is reduced. 

• Symmetric distribution on both 

sides of the monitor well. 

• Distance/fracture size trade-off.
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L-shape + Vertical wells:
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• Fracture location can be 

accurately estimated.

• Trade-off between slippage 

value and fracture size. 

Error < 5%

~ 47 fractures
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Monitor well with complex geometry
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• Similar results as two monitor 

wells. 

• It can be more cost-effective for 

monitoring purposes. 

Error < 5%

~ 89 fractures

Fracture Length

F
ra

c
tu

re
 H

e
ig

h
t F

ra
c
tu

re
 W

id
th



Field Data Example: HFTS2

Hydraulic fracture

Vertical Monitor Well

Horizontal Monitor Well

Vertical Monitor Well Strain Change

Horizontal Monitor Well Strain Change
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Future Works

• Improving calculation efficiency for the inversion algorithm.

• Adding geological constraints to improve accuracy.

• Apply the inversion algorithm for the field measurements.

• Optimize monitor well designs for maximum detectability on fractures in cap 
rocks and CCS reservoirs.
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Conclusion

• CO2 injection can cause natural fractures and faults to deform, compromising 
the integrity of the cap rock in CCS reservoirs, leading to overburden leakage 
and increasing the risk of induced seismicity. 

• Cap rocks are typically composed of shale, which can undergo aseismic 
deformation that is not easily detectable using seismic methods.

• By deploying fiber-optic-based distributed strain sensing in monitor wells, it is 
possible to characterize aseismic and seismic deformation before CO2 leaks 
into overlying formations, offering earlier warning opportunities compared to 
other monitoring methods.

• Optimal positioning and design of monitor wells can enhance detection 
accuracy.
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