Carbon Storage Complex Feasibility for Commercial Development in Southeastern Michigan- CarbonSAFE Phase II (DE-FE0032312)

Joel Sminchak and Beth Vanden Berg - CoPIs Marlon McKoy – Project Manager Battelle, Energy Division

August 5, 2024

2024 U.S. DOE/NETL Carbon Management Research Project Review Meeting

CarbonSAFE **SouthEast Michigan**

Disclaimer

U.S. Department of Energy Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendations, or favoring by the United States Government or any agency thereof. The views and the opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Battelle Disclaimer

Battelle does not engage in research for advertising, sales promotion, or endorsement of our clients' interests including raising investment capital or recommending investments decisions, or other publicity purposes, or for any use in litigation. Battelle endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information, apparatus, process or result obtained from Battelle, and Battelle, its employees, officers, or Trustees have no legal liability for the accuracy, adequacy, or efficacy thereof.

Project Overview

Funding: (\$8.1M DOE, \$2.0M Cost Share)

Performance Dates: 2 years (October 2023 to September 2025)

DOE/NETL Project Manager: Nick Means

Project Team: Battelle (Research Institute in Columbus, Ohio)

DTE Energy (DTE) (Detroit-based diversified energy company serving 2.3 million electric & 1.3 million natural gas customers)

Objective: Develop an integrated commercial-scale storage complex capable of storing 63-million tonnes CO_2 in saline formations within 30-years in the Southeastern region of the Michigan Basin.

- Storage Hub Southeastern MI
- Storage Site SE Michigan site, or alt. northern SE Michigan site
- CO₂ Sources Blue Water Energy Complex (BWEC), St. Clair County, 3 MT/yr, potential future CCGT w/CCS ~3 MT/yr
- Additional Sources numerous sources along I-75 corridor 5MT/yr

Background

- Battelle and DTE are teaming to evaluate CO₂ storage hub feasibility for power generation and other emitters in SE Michigan.
- The project builds on collaborations between Battelle, Midwestern Regional Carbon
 Sequestration Partnership, Midwest Regional Carbon Initiative, & a previous CarbonSAFE
 Northern Michigan Basin Phase I project.
- A previous evaluation was also completed by Battelle Carbon Services for DTE to determine the feasibility of commercial-scale storage in Southeastern Michigan.

Project Benefit to DOE Program Goals

- **Supports** DOE FECM programmatic goals to develop industrial scale CarbonSAFE hubs to help reduce greenhouse gas emissions, develop skilled workforce, and support carbon capture implementation.
- **Provides** 63 million metric tons of secure carbon storage to a key industrial area along I-75 corridor by 2030 with power generation, refining, chemical facilities, steel plants, hydrogen.
- **Progresses** CO₂ storage from SRMS prospective storage volume to contingent storage resource with a 4,600 ft deep stratigraphic test well, analysis of ~200 miles of 2D seismic data, design of safe CO₂ storage system, and risk mitigation measure for a CO_2 storage hub.
- **Benefits** communities in areas with skilled workforce development needs, underserved communities, investments in energy transition.

Places - Partnering with communities for growth

Planet - Leadership toward cleaner energy and environmental stewardship

Progress - Powering towards a brighter omorrow

Technical Approach

Technical Approach includes 7 tasks designed to ensure safe, long-term, economically feasible, and publicly accepted commercial CO₂ storage complex.

Technical Task Organization

Community Benefits Plan

GOAL: Focus on areas with skilled workforce development needs, underserved communities, and needs for investments in energy transition.

Potentially impacted communities: Lenawee, St. Clair, Wayne, Washtenaw, Monroe Counties MI

- 10 of 11 counties in SE MI have DACs cumulative impacts – poor economic, environmental, social, & health indicators
- Nearest DAC to proposed hub approx. 12 miles SW in Lenawee County
- Many DACs in SE MI highly dependent on fossil fuel industry for employment

Regional Subsurface Characterization

- Geotechnical database created March 2024
- Subsurface maps provide a reasonable trend guide until seismic and faults are integrated into interpretation
 - Mt. Simon deepens to the Northwest
 - Mt. Simon thickens to the West
- Significant uncertainty until all subsurface data are integrated
- <u>Geotechnical Database</u>
 - Log data, driller data/interpretations
 - Available seismic line locations
 - Faults and lineaments
 - Core data
 - Injection well data
 - Battelle interpretations of cross sections
 - Purchased core data, Seismic data (non-public)

Integration of Gravity and Magnetic Maps

- Possible insights to help guide geologic interpretations and best STW location
 - Avoid Precambrian highs (Livingston County)

Paleo-highs & lows

- Paleo-highs and Paleo-lows are difficult to identify location or delineate shape
- Known paleo-high in Livingston County appears to correlate to magnetic data
- If correlation is valid, the shape and size can be estimated

Mt. Simon Depositional Changes Across Michigan

- Continued scrutiny of data has not revealed the exact intersection of the different depositional systems
- Integration to seismic observations occurs at a local scale

Legacy vs Reprocessed Data

- Acquired by Shell in 1986; reprocessed by SEI in 2015
- Vibroseis source -60 fold
- High frequency results
- More detail in faulted areas
- Lateral amplitude
 variation & character

Seismic data owned or controlled by Seismic Exchange, Inc.; interpretation is that of Battelle

2D Identification of faults

- More structurally complex than base map representation
- Some faulting extends into shallow sections
- STW location is pending ongoing seismic interpretation and integration with other subsurface data

Seismic data owned or controlled by Seismic Exchange, Inc.; interpretation is that of Battelle

Subsurface Modeling and Analysis: Source Assessment

 Hub assessment source assessment completed to delineate CO₂ source specifications, potential for capture retrofit, and options for connecting to CO₂ storage hubs in SE MI.

CO₂ Capture Techno-Economic Assessment

	1	1.7 million tons CO2/yr
CO₂ Ranking	2	Between 0.3-1.7 million tons CO2/yr
	3	0.3 million tons CO2/yr
	1	75-100 CO2 mol %
Purity Ranking	2	25-75 CO2 mol %
	3	0-25 CO2 mol %
	1	\$0-25 per tCO2
Cost	2	\$25-40 per tCO2
	3	\$40+ per tCO2
Technology	1	Technology is in use
rechnology	2	Some technology development
* Uncertain	2	Little technology development
development	3	Little technology development
	1	0-25 years
Age	2	25-50 years
	3	50+ years

Facility/Pla nt name	Count y	Stat 0	Industry Type/ Primary Fuel	Industry Sector	Total annual CO2 emissio n (tons)	Techn ology Rank	Purit y Rank	Cos t Ran k	CO2 Emissio n Rank	Age Rank	Overall Rank (witho ut age)	Overa II Rank (with age)	Additional notes
Air Products and Chemicals Inc./Detroit Hydrogen Facility Marathon Refinery	Wayne	МІ	Hydrogen Production	Chemical s	444520	1	2	1	2	1 (Air Products to Build Michigan Hydrogen Plant to Supply Marathon's Detroit Heavy Oil Upgrade Project, 2009)	6	7	
CARBON GREEN BIOENERG Y	Ionia	м	Stationary Combustion, Industrial Wastewater Treatment	Other, Waste, Ethanol Productio n	83957	1*	1	1	3	1 (Our History)	6	7	
THE ANDERSON S MARATHO N HOLDINGS LLC	Calhou n	МІ	Stationary Combustion, Carbon Dioxide (CO2) Supply	Other, Suppliers of CO2, Ethanol Refinery	228679	1*	1	1	3	1 (Ethanol)	6	7	
Algont LLC	Lucas	он	Stationary combustion, petrochemica Is	Chemical s	51162	3*	1	1	3	1 (Andersons Albian Ethanol LLC; Chen A., 2020)	8	9	

Hub Scale CO₂ Sources in SE MI

Facility Category	Number of Facilities	Total CO2 Emissions (million metric tons/yr)
Category 1	13	33.836
Category 2	46	50.238
Category 3	82	54.123

Subsurface Modeling and Analysis: Hub Design

 Hub assessment in progress to evaluate linking CO₂ sources in SE Michigan to large scale CO₂ storage hub(s).

Hub Scale Injection Field Design

Subsurface Modeling and Analysis

Injectivity analysis completed for 27 Class I UIC disposal wells. Operational data on injection rates & pressures used to estimate equivalent CO_2 injection rate sustainable in SE Michigan.

Class I UIC Wells in SE MI

2	A	В	F	н		Co	monol	aial
1	Permit.Index	WellAPINo	Permit.WellNAme	OWNER	,	JU		па
2	M0002	21121000027000	Dupont Montague	E.I. DuPont de Nemours & Co., Incorporated		••••		
3	M0051	21139000517000	Heinz	Heinz North America				
4	M0052	21139000527000	Heinz	Heinz North America				
5	M0053	21139000537000	Heinz	Heinz North America				
6	M0069	21163000697000	Disposal Well	Detroit Coke Corporation				
7	M0070	21139000707000	Deep Well	Chemetron Corp				
8	M0071	21139000717000		BASE Chemetron				
9	M0129	21139001297000	Mt Simon	Pfizer Incorporated				
10	M0130	21139001307000	Mt Simon	Pfizer Incorporated				
11	M0137	21077001377000	Lloiohn	Pharmacia and Uniobn Company, LLC				
12	M0155	21163001557000	Semet-Solvay	Honeywell International Incorporated				
13	M0184	21163001847000	Ford Motor	Ford Motor Company				
14	M0217	21139002177000	I OIG MOLOI	RASE Chamatran				
14	M0217	21133002111000	Comet Colony	DASI Chemetional Incompared				
10	M0220	21015002207000	Semer Solvay	Pottle Creek Cas Company				
10	N0321	21015003217000	Lacey	Decreek Gas Company		1/1-1		
1/	M0327	21077003277000	Opjonn	Pharmacia and Opjonn Company, LLC		100	Legend	ML Simon Structure (ft ms
18	M0328	21161003287000	Stoter Marshall	German Sciences, incorporated			Mt Simon Falloff	1000
19	W0336	5.000 0000 TT000	Ivit. Simon	Parke-Davis		1	WIL SITION Failon	
20	M0357	21091003577000	LW.	Bio-Lab, Incorporated		/ •	Mt. Simon Inj. Wells	-5000
21	M0373	21139003737000	Parke-Davis Mt. Simon	Phzer, Incorporated			Mt. Simon Wells	-10000
22	M0376	21163003767000	Environmental Disposal Systems	Environmental Disposal Systems, Incorporated			Scale (km)	
23	M0430	21091004207000	M.W.	Bio-Lab, Incorporated		.0	Scale (kill)	-15000
24	M0462	21163004527000	EDS	Environmental Disposal Systems, Incorporated	0000	8000	0 20 40	-20000
25	M0463	21163004537000	EDS	Environmental Disposal Systems, Incorporated	-100	~ ~		
26	M0509	21139004707000	Mirant IW	Mirant Zeeland, LLC			X	
27	M0510	21139004717000	Mirant IW	Mirant Zeeland, LLC				
			Bast Mirant Zeele	-6000 Michigan	····	ŀ	4000	
				Upjohn	Gelman 	Honeyw	ell	•

- Injectivity Index generally falls in range 200-400 tonnes/yr/psi
 - high as ~1000 tonnes/yr/psi for short periods

Pressure Fall Off and Injection Performance Analysis

Risk Assessment and Mitigation

- Risk analysis completed to prioritize individual project risks for analysis or action by assessing their probability of occurrence & impact for subsurface, non-technical, surface items.
- Key benefit of this process is that it focuses efforts on high-priority risks throughout the project.

Stakeholder Outreach

To date, we have:

- •Formed internal Engagement Team with DTE
- •Designed and built project website (not live) with email address for two-way engagement
- Implemented engagement tracking
- Drafted a project fact sheet
- Participated in unique DEIA training session
- •Drafted a Community Open House plan
- •Scheduled "boots on the ground" visit to proposed site
- Conducted initial EJ Assessment
- Identified tentative "fenceline" neighbors

· The

About the Project

Project Greenstone, named for Michigan's state gemstone, is a collaborative project supported by the U.S. Department of Energy (DOE) and its <u>CarbonSAFE</u> initiative.

In Project Greenstone, our team of scientists, engineers, and geologists will drill a vell to gain information about the geology of the area. By studying information gained from the well – which includes a sample of the rock formations underground and data from monitoring devices inside the well – project leaders can determine if the geology may be conducte for future underground sequestration of carbon dioxide (CO2). Project Greenstone does not currently include plans for CO2 injection or storage in the well.

Throughout the process, Project Greenstone leaders will keep the community updated on progress and provide education on project benefits.

mage shows peologists analyzing rock care samples taken from a well.

CO₂ Management, Monitoring, Class VI Permitting, Techno-economic assessment (scheduled later in project)

- Initial discussions with Michigan Environment, Great Lakes, and Energy for stratigraphic test well plan and Class VI permit process.
- Preliminary techno-economic analysis of CO₂ capture for sources in SE MI.

Transportation

CO₂ Transportation Options

Facility/Plant name	County	Industry Type/ Primary Fuel	Industry Sector	annual CO2 emission (tons)	Techn- ology Rank	Purity Rank	Cost Rank	CO2 Emission Rank	Age Rank	Overall Rank (without age)	Overall Rank (with age)
Air Products Detroit Hydrogen Facility Marathon Refinery	Wayne	Hydrogen Production	Chemicals	444,520	1	2	1	2	1	6	7
The Andersons Marathon	Calhoun	Ethanol	Ethanol Refinery	228,679	1*	1	1	3	1	6	7
Belle River	St Clair	Subbituminous coal	Power Plants	7,441,135	1	3	3	1	2	8	10
Blue Water Energy Center	St Clair	Natural gas	Power Plants	1,854,681	1	3	3	1	1	8	9
Dan E Karn	Bay	Subbituminous coal	Power Plants	3,646,483	1	3	3	1	3	8	11
Dearbom Industrial Generation	Wayne	Natural gas	Power Plants	1,814,546	1	3	3	1	1	8	9
Midland Cogeneration Venture	Midland	Natural gas	Power Plants	2,947,970	1	3	3	1	2	8	10
Monroe	Monroe	Subbituminous coal	Power Plants	16,290,016	1	3	3	1	3	8	11
Oregon Clean Energy Center	Lucas	Natural gas	Power Plants	2,301,852	1	3	3	1	1	8	9

Techno-Economic Capture Assessment

Technical Approach

Schedule/Milestones/Success Criteria

- 2-year project (October 2023-September 2025)
- Key success criteria: drill test well, identify site for hub, community/stakeholder engagement, verify design & techno-economics.

Task/ Subtask	Milestone & Description	Planned Completion Date	Verification Method
3.0	Well drilled and planned characterization activities complete	16 Months after project start	Well Completion Report
4.0	Static Earth Model and Dynamic Model completed	18 Months after project start	Geologic Modeling and Plume Extent Report
2.0/8.0	Techno-Economic Assessment and Jobs and Economic Revitalization Assessment show a viable, economically attractive project with benefits to affected communities	18 Months after project start	Techno Economic Assessment and Public Engagement Plan
7.0	Additional Characterization and Class VI permitting plans completed	30 Days before end of project	Additional Characterization and Permitting Plan
2.0	Community characterization to understand demographics, challenges, and history to guide outreach plan	12 Months after project start	Community characterization report
2.0/9.0	Public engagement/Community Benefits Plan to guide communications and engagement with communities, DEIAs, DACs, and EJ areas	Update 90 days after project start Final 30 days before project end	Community dynamics, benefits, and outreach report

Plans for Future Commercialization

- **Future plans**: include linking sources and sinks for a variety of CO₂ sources in southern Michigan and northern Ohio (DTE Energy, Marathon, and other industrial emitters along the I-75 corridor).
- DTE is investing in upgrading its power generation portfolio and corresponding distribution grid to reduce outages.
- Implementing the SE MI CarbonSAFE project enables a reliable power supply through dispatchable resources that can accelerate decarbonization, helping mitigate climate change/resilience risks.

Summary

- Technical approach is designed to ensure a <u>safe</u>, long-term, economic, and publicly accepted commercial 63 Mt CO₂ storage complex in SE Michigan
- Progress to date:
 - Processing & interpretation of 290 miles of 2D seismic
 - Regional geological characterization
 - CO₂ storage hub design, risk analysis
 - Outreach & Community Benefits Plan refinement and specification
 - Finalizing stratigraphic test well location

Reducing Risk, Advancing Technology, and Supporting Growth

Safe and secure CO₂ storage system is required with storage capacity, sufficient confining layers, monitoring, and safety protocols to ensure public acceptability.

800.201.2011 | solutions@battelle.org | www.battelle.org

References

- Esch, John, 2009, Michigan Basin Structural Lineaments and Magnetic Total Field, Michigan Department of Environmental Quality Office of Ggeological Survey Minerals and Mapping Unit
- Esch, John, 2010, Michigan Basin Structural Lineaments Overlain on Bouguer Gravity with Oil and Gas Fields, Michigan Department of Natural Resources and Environment, Office of Geological Survey Petroleum and Mining Unit
- Fielding, Christopher R., Philip J. Ashworth, James L. Best, Eric W. Prokocki, Gregory H. Sambrook Smith, 2012, Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record?, Sedimentary Geology, V 261–262, Pg 15-32
- Google Earth, 2008, Oblique satellite view of the Nayarit Coast, Mexico, a modern wave-dominated shoreline <u>Nayarit state map satellite // Mexico</u> (satellites.pro)
- Land Use data from: https://apps.nationalmap.gov/viewer/
- Michigan fault map data from Michigan EGLE GeoWebFace, https://www.deq.state.mi.us/GeoWebFace/
- Patterson, Kyle, 2011, Geological Controls on Reservoir Quality and Geologic Carbon Sequestration Potential in the Upper Cambrian Mount Simon Sandstone, Masters Theses, 143pg. https://scholarworks.wmich.edu/masters_theses/4441
- Precambrian faults from: Michigan.gov, DTMB Maps | Geographic Information Systems (GIS) (michigan.gov)
- Rine, Matthew, 2015, Depositional Facies and Sequence Stratigraphy of Niagaran-Lower Salina Reef Complex Reservoirs of the Guelph Formation, Michigan Basin. 10.13140/RG.2.2.20337.79203.

2015 Constraining Groundy

- Risk Management Process Image from: DOE-NETL risk management process (DOE-NETL, 2011)
- Seismic data from <u>www.seismicexchange.com</u>, accessed November 2023

Wichigan Basin through Helium Concentrations and Isotopic Ratios, Geofluids, 23 p.

Project Execution Plan & Timeline

Budget Period	B1																				
TASK/SUBTASK 🔶 - Milestones 🔶 - Deliverables		Y 2.	3				FY 24									FY	25				
	(Q 4		Q	1		Q 2		Q3	;	Q	1	Ç	21	Q 2	2	Q	3	Q	24	
Task 1 - Project Management and Planning							<u> </u>														
1.1 - Project Management and Planning																					
1.2 - Project Management, Controls, and Reporting																					
1.3 - Technology Transfer																					
TASK 2 - Societal Consideratiosn and Impacts												\diamond									
2.1 - DEI and Accessibility			╓			2_															
2.2 - Justice40 Initiative			Ħ																		
2.3 - Community and Labor Engagemernt						2															
2.4 - Investing in Job Quality and a Skilled Workforce			4																		
TASK 3 - Site Characterization and Assessment																	_				
3.1 - Database Development				╓╴																	
3.2 - Drill Stratigraphic Test Well				H						\diamond											
3.3 - Data Collection and Analysis																					
3.4 - Storage Hub Assessment																	_				
TASK 4 - Subsurface Analysis and Modeling																					
4.1 - Static Earth Model(s)			ľ	•																	
4.2 - Dynamic Simulations													<	ݤ							
4.3 - Caprock Integrity											*										
4.4 - Storage Design																	♦			_	
TASK 5 - Risk Assessment and Mitigation																					
5.1 - Risk Assessment											•										
5.2 - Risk Mitigation Plan																	4	►		_	
TASK 6 - CO ₂ Management and Monitoring																					
6.1 - CO ₂ Management Plan																					
6.2 - CO ₂ Injection System Plan																					
6.3 -CO ₂ Monitoring Plan															¥					_	
TASK 7 - UIC Class VI Permitting																					
7.1 - Identify Regulations and Permits																					
7.2 - Prepare Information for UIC Permits																					
7.3 - Develop Plans to Obtain Additional Permits																				<mark>>+</mark>	
TASK 8 - Techno-Economic Assessment																					
8.1 - CO ₂ Storage Complex Siting																					
8.2 - Plan for Landowner Agreements for Site Access and Pore Space	Use																				
8.3 - Prepare Initial Development Phase Plan		Ш																			
8.4 - Evaluate Economic Feasibility																					
TASK 9 - Outreach												\diamond									
9.1 - Technical Outreach						∕▼															
9.2 - Materials					K																

Technical Approach

Task leads assigned for technical tasks. DTE task leads in progress.

* Underrepresented persons in STEM

Project Success Criteria

Project milestones and scheduled dates

Task/ Subtask	Milestone & Description	Planned Completion Date	Corresponding Calendar Date
3.0	Well drilled and planned characterization activities complete	16 Months after project start	01/21/2025
4.0	Static Earth Model and Dynamic Model completed	18 Months after project start	03/21/2025
2.0/8.0	Techno-Economic Assessment and Jobs and Economic Revitalization Assessment show a viable, economically attractive project with benefits to affected communities	18 Months after project start	03/21/2025
7.0	Additional Characterization and Class VI permitting plans completed	30 Days before end of project	08/20/2025
2.0	Community characterization to understand demographics, challenges, and history to guide outreach plan	12 Months after project start	09/19/2024
2.0/9.0	Community Benefits plan to guide communications and engagement with communities, DEIAs, DACs, and EJ areas	Update 90 days after project start Final 30 days before project end	12/19/2023 & 08/20/2025

Project success criteria and scheduled dates

Task	Success criteria	Scheduled date	Corresponding Calendar Date			
1.0	Datasets, files, metadata, software/ tools and articles developed as part of project	No more than 24 months after initial award	08/31/2025			
3.0 and 4.0	Verification of commercial scale storage and injectivity	of commercial scale 16 months after project start				
4.0	Development of feasible storage complex design	elopment of feasible storage complex design 18 months after project start				
5.0 and 6.0	Reduce project risks and uncertainties	Reduce project risks and uncertainties 30 days before end of project				
8.0	Provide evidence that project is economically feasible	Provide evidence that project is economically feasible 18 months after project start				
7.0	Draft UIC Class VI permit	30 days before end of project	08/20/2025			
2.0	Evaluate public acceptance and community engagement	Updated plans 90 days after project start 30 days before end of project	12/19/2023 & 08/20/2025			

