Illinois Storage Corridor: Updates DE-FE0031892

Roland Okwen

Illinois State Geological Survey University of Illinois

U.S. Department of Energy National Energy Technology Laboratory 2024 FECM/NETL Carbon Management Research Project Review Meeting August 5th – 9th, 2024

> **ILLINOIS** Illinois State Geological Survey Prairie research institute

Presentation Outline

- Project objective and overview
- Prairie State Generating Company (PSGC) site updates
- One Earth Energy (OEE) site updates
- Key accomplishments to date
- Future tasks
- Lessons learned to-date
- Announcement

Project Objective

Accelerate commercial deployment of carbon capture utilization and storage (CCUS) within a region with proven geologic storage performance and with numerous industrial carbon sources.

Goals:

- Characterize two individual sites with committed industrial CO₂ sources for commercial-scale CO₂ storage
- Prepare Underground Injection Control (UIC) Class VI permits for construction at each site.

Project Sites

- Prairie State Generating Company site : Washington County, IL
- One Earth Energy site: Ford County, IL

Prairie State

One Earth Energy

Prairie State Generating Company site

Prairie State Generating Company (PSGC) site Updates

Complex

Prairie State – coal fired power station

commissioned 2012 1600 MW – 2 units

St Peter-Everton Storage Complex (ca

8.125 MTPA CO₂ from 1 unit)

- Storage near site location
- Characterization well:

Lively Grove #1 (LG #1)

LIVELY GROVE #1: Integrated Petrophysical Analysis - Main Reservoir Section

			Gamma Ray	Dens-Neut	NMR T2 Dist	ELAN Lithology	Porosity Calculated	Grain Dens	Permeability	Rock Types			CT Cyllindricals
MD (ft) 1:650	Client Formation Tops	Lithology zones	HDRA: Sizeline ECGR_EDTC 150 0 (ECGR_EDTC) 150 -0.8 g/cm3 0.2 CALL 6 in 16 ECGR_EDTC 0 gAPI 150	As Received Bulk Density 1.95 g/cc 2.95 RHOZ Edited 1.95 g/cm3 2.95 NPHI Edited 0.45 ft3/ft3 -0.15 TCMR Edited 0.45 ft3/ft3 -0.15	NMR 0.00 0.00 0.00 T2_DIST 0 0 (fl3/fl3) 0.02	Illite Acointrie Glaucontrie Glaucontrie Glaucontrie Glaucontrie Antwork Antwo	HYDROCARBON INTERGRANULAR WATER CLAY BOUND WATER • Total Porosity • 20 %BV 0 PHIT_ELAN 0.2 v/v 0	Total Dry Grain Density 2.5 g/cc 3 RHGA GEO QE 2.5 g/cm3 3	Permeability mD 1000 KSDR 0.1 mD 100 KTIM 1 mD 1000 KINT_GEO_QE 1 mD 1000	LoRes HRA 0 unitiess 1	CDEPTH (ft) 1:650	Cored Sections	Core CT Cylindrical
- 3500 -	Joachim	Melenink		and the second second	TE		The work and				3500 -	Core 2	
- 3600 -	St. Peter	a da terra de		and the second se	ŧ		Martha Contraction		Mary Mary		- 3600 -	re 4	
- 3800 -	Everton			Preside the second second			reversion in the second water in the	martin M	ALL MAY		- 3800 -	Ő	
	Shukopee			33									

Lively Grove#1 geocellular Model

Grid dimensions(X and Y): 1000 by 1000 ft Number of layers:149 layers Number of grid cells: 5,154,804 Number of zones: 8 Including: Maquoketa Group, Trenton, Platteville, Joachim, St Peter Sandstone, Everton Dolomite, Everton Sandstone, and Shakopee

CO₂ Saturation after 20 years of Injection

9

Illinois State Geological Survey prairie research institute

PSGC site status

- Class VI permit documents prepared and submitted to PSGC
- PSGC will select third-party operator(s) to submit Class
 VI permit application
 - Negotiation ongoing
 - No pipeline FEED study was performed as a result
- Lively Grove #1 has been plugged.
- Storage field development plan ongoing
- Community Benefits Plans development ongoing
- Rigorous characterization of Knox Group ongoing

One Earth Energy (OEE) site

One Earth Energy (OEE) site Updates

- One Earth Energy ethanol plant
- Mt Simon Storage Complex Storage

HUB (0.5 to 4.5 MTPA CO_2)

- Storage near site location
- Onshore Hub Storage facility
- Characterization well: OEE #1

Model area

Iterative versions of the model were updated to include the newly acquired data at the One Earth CCS site

Lithostratigraphy/ Well log X-section

OEE geocellular model

Heterogeneous model, MS+ Argenta averaging 11%, 44 md

Average Cell size:

- 1000 ft x 1000 ft x 21 ft
- Around injection wells
 - 250 ft x 250 ft x 21 ft

Unit	Thickness, ft	Porosity, %	Permeability, mD
Eau Claire	537	5	0.0001
Upper MS	720	11	31
Middle MS	740	9	15
Lower MS	320	9	12
LMS Arkose	200	16	308
Argenta	460	12	18

UIC Class VI permit status

One Earth Sequestration site

- Three Class VI permit applications were submitted to the US EPA on October 28, 2022.
- US EPA comments (on different sections of the permit application)
 - First comments: May 31st, 2023. → Narrative, Pre-Operational Testing Program, Quality Assurance and Surveillance Plan (QASP), Testing and Monitoring Plan (TM).
 - Second comments: April 25th, 2024. → Heavy on computational modeling. Area of Review and Corrective Action, Emergency and Remedial Response Plan, QASP, TM, Narrative, Post-Injection Site Care and Site Closure Plan (PISC)
 - Third comments: July 3rd, 2024(EPA revised and resubmitted July 9th)
 → Well Construction, PISC, Financial Assurance
- Responses to US EPA's comments have been submitted on time.

Community engagement

- Community engagement is on a continuous basis.
- Both positive and challenging community engagement
 - McLean County Zoning Board of Appeals Injection well setback and CCS safety
 - Public hearings engaging with opposing advocacy group (Illinois Peoples Action), the public, and board members.
 - Emergency response agencies to develop the Emergency Response Plan
 - Meetings with McLean and Ford County Emergency Management Agencies
 - Met with local responders, including Gibson City, Sibley, Anchor, Saybrook/Arrowsmith, Colfax, and Cropsey Fire Departments
 - Gibson City Council public meeting to discuss results of atmospheric dispersion modeling, future of low-carbon ethanol, and sequestration project.
 - Ford County Board Carbon transport and storage safety concerns
 - Public hearings engaging with opposing advocacy groups (Illinois People's Action and Eco-Justice Collaborative), the public, and board members

Community engagement

- Ford and Iroquois Farm Bureau meetings to discuss the project and future of low-carbon ethanol for Sustainable Aviation Fuel (SAF) production.
- Presentation to Federal, State and County government officials on ethanol production and the importance of CO₂ Sequestration.
 - Meeting called by Tom Bennett and Jason Bunting hosted at the One Earth facility.
 - Panel of discussion with representatives from PRI, ISGS, University of Illinois, One Earth, Rex America, Illinois State University, Projeo, Vault 44.01, state legislators, local businesses, and local officials.
- General outreach meetings through the Rotary and Lion's Clubs
- Local landowner public meeting to discuss development of the project.

Illinois Storage Corridor Project Status

Key accomplishments to date

- 1. Characterized both OEE and PSGC sites
- 2. Completed quantitative risk assessment for both sites
- 3. Plugged Lively Grove #1 well (PSGC site)
- 4. Prepared UIC Class VI permit documents for the PSGC site
- 5. Submitted three UIC Class VI permits for the OEE site
- 6. Completed CO₂ pipeline FEED studies for OEE site
- 7. NRAP study completed
- 8. Completed Statistical optimization approach for monitoring well placements (Machine Learning Approach).
- 9. Completed 15 technical reports and counting.

Future tasks

- Complete Environmental Assessment (EA) for OEE site
- Complete storage field development plans for PSGC site
- Complete community Benefit Plans (CBPs)
- Complete regional CO₂ point sources assessment and pipeline networks studies
- Research work:
 - Regional study of St. Peter Sandstone
 - Rigorous characterization of the Knox Group at PSGC site
 - Reservoir modeling
 - Potential additional storage resource

Lessons learned to date

- 1. Stakeholder engagement
- 2. Industrial partnerships
- 3. CO2 storage resource vs capture capacity
 - 1. Large storage resource vs small capture capacity
 - 2. Small storage resource vs large capture capacity
- 4. Regulations
 - 1. Permits: Class VI, pipeline
 - 2. State legislations

Announcement

ISC Project All-Hands Meeting

Dates: September 4 – 5, 2024 Location: Champaign, Illinois

Agenda

- Presentations
- Roundtable discussions
- Site visit to One Earth Sequestration/OEE site

Registration is still open <u>https://forms.illinois.edu/sec/465698360</u>

Project Team

Acknowledgement

This material is based upon work supported by the Department of Energy Award Number DE-FE0031892

End

