

Mitchell CarbonSAFE

DOE Project Number DE-FE0032268

Nate Grigsby- PI

Nathan Webb and Sherilyn Williams-Stroud- CoPIs

I ILLINOIS

Illinois State Geological Survey Prairie Research Institute

U.S. Department of Energy

Fossil Energy and Carbon Management and National Energy Technology Laboratory

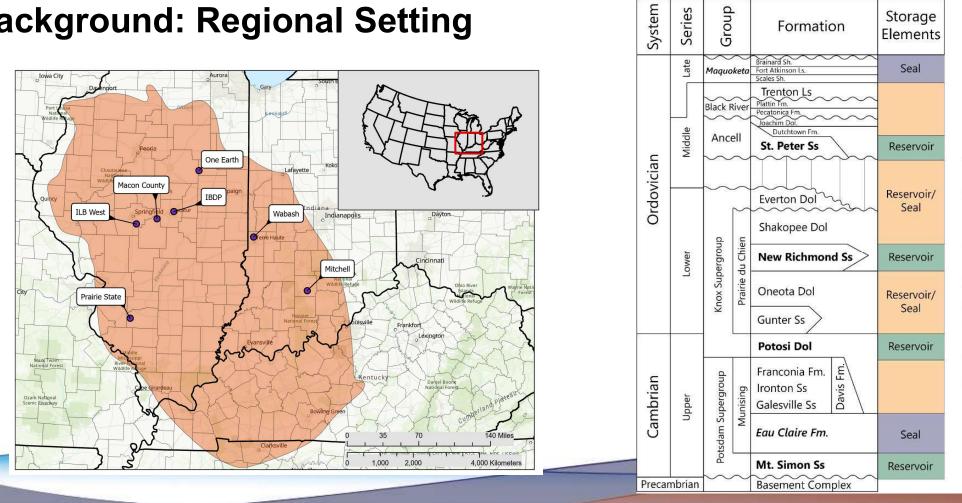
Carbon Management Research Project Review Meeting

Monday August 5th; 2024, 1:25 PM

Acknowledgements

- This material is based on work supported by the Department of Energy Award Number DE-FE0032268
 - FPM Mary Dailey
- Through a university grant program, IHS Petra and SLB Techlog software were used for the mapping and well log analysis work presented herein.

Background: CO₂ Source

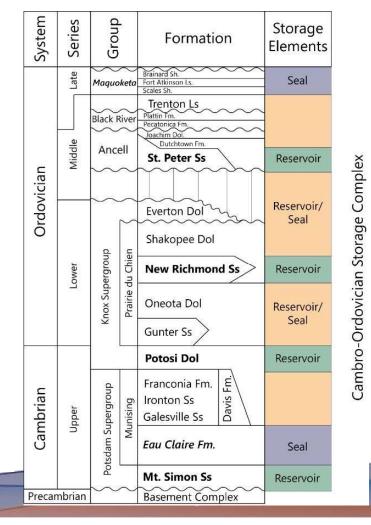


- Cement production accounts for ~8% of global CO₂ emissions
- Heidelberg Materials' Beyond 2020 Strategy
 - 2030: Reduce CO_2 to 50% of 1990 emissions
 - 2050: Net zero
- Mitchell Cement Plant
 - Established in 1897
 - \$650M upgrade complete on June 15th 2023
 - 2nd largest in North America
- Projects selected for DOE awards
 - FE0032222---FECM FEED study: 2-2.6 Mt CO₂/year
 - FE0032268---CarbonSAFE Phase II (this study)
 - CD0000009---OCED CCS Demonstration project: Capture/transport FEED, Class VI Permit

Formation

Background: Regional Setting

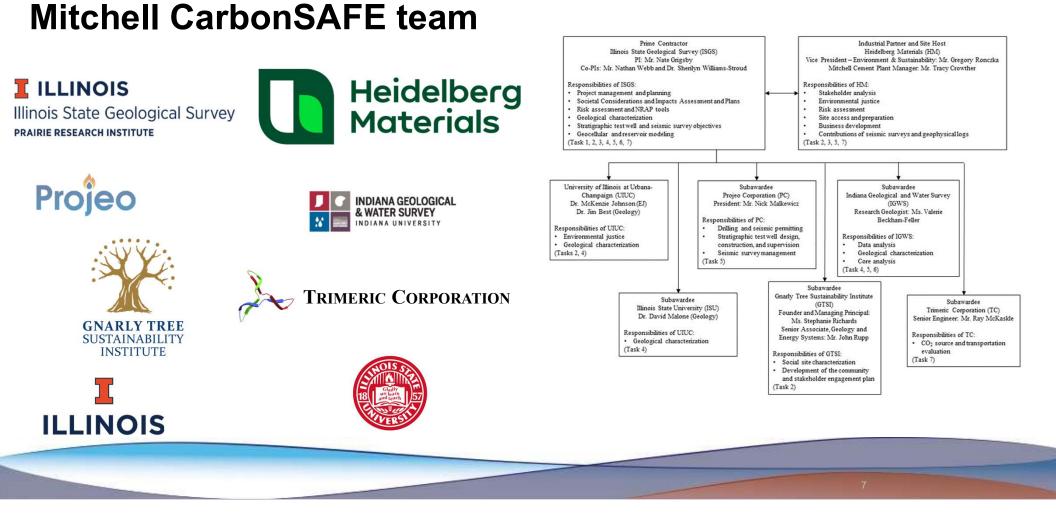
Cambro-Ordovician Storage Complex


Storage

Elements

Background: Anticipated Local Geology

- New Richmond Sandstone; 2,800 ft deep; 400 ft thick (>200 ft net)
 - Several porous/permeable sandstone embedded in dolomite
- Potosi Dolomite (Vuggy Knox); 3,700 ft deep; 2,800 ft thick
 - Vugular dolomite can act as reservoir and seal
 - Unpredictable
 - Target at Wabash (75 miles NW)
- Mt. Simon Sandstone; 5,800 ft deep; 1,200 ft thick
 - Regional studies suggest low porosity but limited data
 - Target at Decatur (IBDP; 150 miles NW)
- Seals
 - Maquoketa and Eau Claire both thick and laterally extensive
 - Mt. Carmel Fault 12 miles east


Project Overview

- Prepare Mitchell for Class VI permit
 - Geologic characterization
 - Establish geologic suitability of the site for CCS
 - Develop Community Benefit Plan
 - Conduct risk assessment
 - Evaluate technical and economic feasibility of site

- Performance Dates
 - 10/2023 to 9/2025
- Funding summary
 - \$8,898,036 federal funds
 - \$2,224,760 cost share
 - \$11,122,796 total

	Project Fun	ding Profile Pe	r Project Teaı	n Member		
			Budget P	eriod 1		
	Ye	ar 1	Yea	r 2	To	tal
	DOE Funds	Cost Share	DOE Funds	Cost Share	DOE Funds	Cost Share
Applicant (ISGS/UIUC)	\$1,820,986	\$286,548	\$1,744,316	\$286,552	\$3,565,302	\$573,100
Heidelberg		\$1,576,988				\$1,576,988
Projeo Corporation	\$5,011,752				\$5,011,752	
Indiana Geological and Water Survey	\$100,000	\$25,336	\$100,000	\$25,336	\$200,000	\$50,672
Trimeric Corporation			\$24,974		\$24,974	
Gnarly Tree Sustainability Institute	\$47,535	\$11,884	\$48,473	\$12,116	\$ 96,008	\$24,000
Total (\$)	\$6,980,273	\$1,900,756	\$1,917,763	\$324,005	\$8,898,036	\$2,224,760
Total Cost Share (%)						20%

Project Execution Plan (Tasks)

- 1: Project Management and Planning
- 2: Community Benefit Plan
 - Community outreach programming
- 3: Risk Assessment and Monitoring
 - Identification of project risks
 - Development of mitigation and monitoring strategies
- 7: Storage Complex Development Planning
 - Conceptual level design study

ILLINOIS STATE GEOLOGICAL SURVEY ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES

Expected Outcomes

- 1: Effective project management
- 2: Updated CBP
 - DEIA Implementation
 - Community engagement strategy
 - EEJ assessment and J40 Initiatives
- 3: Site specific risks and mitigation strategies
- 7: Technical and economic feasibility of site

Project Execution Plan (Tasks)

- 1: Project Management and Planning
- 2: Community Benefit Plan
 - Community outreach programming
- 3: Risk Assessment and Monitoring
 - Identification of project risks
 - Development of mitigation and monitoring strategies
- 7: Storage Complex Development Planning
 - Conceptual level design study

ILLINOIS STATE GEOLOGICAL SURVEY ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES

Expected Outcomes

- 1: Effective project management
- 2: Updated CBP
 - DEIA Implementation
 - Community engagement strategy
 - EEJ assessment and J40 Initiatives
- 3: Site specific risks and mitigation strategies
- 7: Technical and economic feasibility of site

Project Execution Plan (Tasks)

- 4: Subsurface Characterization
 - Develop and update conceptual geologic models of reservoirs and seals
 - Data evaluation
- 5: Drilling and Field Data Acquisition
 - Stratigraphic test well
 - ~7,200 ft (through Mt Simon)
 - Sophisticated logs, ~600ft core, ~100 sidewall, 3 DSTs
 - 2D Seismic Survey
 - 54 miles to evaluate structure and formation continuity
- 6: Storage Complex Modeling
 - Geocellular Modeling
 - Reservoir Simulations

ILLINOIS STATE GEOLOGICAL SURVEY ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES

Expected Outcomes

- 4: Refined characterizations
 - Conceptual geologic models for targets and seals
 - Local fluid properties (USDW)
- 5: Site specific data to inform Tasks 4 and 6
- 6: Constrain reservoir injectivity, containment, capacity
 - Area of Review

Project schedule and key milestones

Table 4. P	rojec	et Milestones		
Task / Subtask	ID	Milestone Title & Description	Planned Completion Month	Verification Method
1/1.1	A	Project Kickoff Meeting	2	Attend Meeting, Presentation File provided to DOE
1/1.2	B	Updated Project Management Plan	2	File provided to DOE
2 / 2.1	C	Updated Community and Stakeholder Engagement effort	3	File provided to DOE
2 / 2.0	D	CBP Mid Project Update Meeting	12	Attend Meeting, Presentation File provided to DOE
2 / 2.1	E	DEIA SMART (per DEIA Plan)	12 & 24	Mid project review and End of project report
2 / 2.3	F	Energy and Environmental Justice Assessment	24	Included in end of project report
3/3.2	G	Risk Mitigation Plan	23	File provided to DOE
4 / 4.1	н	Obtain Stratigraphic Well Drilling and Seismic Permits	6	Summary in quarterly report
5/5.2	I	Complete Stratigraphic Test Well	10	Summary in quarterly report
5/5.4	J	Complete 2D Seismic Survey	14	Summary in quarterly report
6/6.2	K	Storage complex characterization and assessment report	20	File provided to DOE
6/6.3	L	Detailed Site Characterization Plan	23	File provided to DOE
7 / 7.1	М	Preliminary CO ₂ management & monitoring plan, including coverage for transport of CO ₂	24	File provided to DOE
7/7.2	N	Technical and economic feasibility evaluation of a proposed CO ₂ storage project	24	File provided to DOE

100000	le 7: Gantt Chart with Team Responsibilitie ters refer to milestones in Table 4.	s by Tas	k.											Bu	dget	Perio	od 1													C	Orgai	nizat	ion		
		Start	End	10/23	11/23	12/23	01/24	02/24	03/24	04/24	05/24	06/24	07/24	08/24	09/24	10/24	11/24	12/24	01/25	02/25	03/25	04/25	05/25	06/25	07/25	08/25	09/25	S		C		SN		IS	
#	Task Name	Month	Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	ISGS	HM	UIUC	PC	IGWS	IC	GTSI	ISU
1.0	Project Management and Planning																																		
1.1	Manage all project activities, objectives, & milestones	1	24	А																								x							
		1	2		B																							Х							
1.3	Data management	1	24																										Х	Х	X	Х	X	X	Х
	Access to geologic materials / samples	1	24																									х							
2.0	Community Benefits Plan																																		
2.1	Community and labor engagement	1	19			С									D													Х	X	X				X	
2.2	Investing in job quality and a skilled workforce continuity	2	8																									x	x	x				x	
2.3	Diversity, equity, inclusion, and accessibility	1	19	1								1		E	D						Ϊ Î		1		î î	E	1		X	х	X	х	X	X	х
2.4	Justice40 Initiative	1	19												D						į į	F						Х	X	х				X	
3.0	Risk Assessment and Monitoring		÷				е С					22											8 S												
3.1	Conduct risk assessment	2	23																									Х	X						
	Develop risk mitigation & monitoring strategies	2	23																							G		x	x						
4.0	Subsurface Characterization			-										~												_									
4.1	Conduct pre-drilling site assessment & obtain drilling & seismic acquisition permits	1	6						н																			x		x	x	x			x
4.2	Develop conceptual geological model	3	21																									Х		X	Х	Х			х
4.3	Analyze well data	9	21																									Х		х		Х			Х
5.0	Drilling and Data Acquisition			_												0									· · · · ·										
5.1	Design seismic acquisition & well drilling program	1	6																									x	x	x	x	x			x
5.2	Drill & construct stratigraphic test well	8	10										I																	X		х			X
5.3	Collect well data	11	14																			1						Х	Х	X		Х			X
5.4	Conduct regional 2D seismic survey	11	14														J											Х			X	Х			
	Storage Complex Modeling						_																												
	Develop geocellular models	2	20																									Х		X		Х			X
	Develop reservoir models	2	20																				K					Х							
	Identify future data requirements	11	23																							L		Х		X		Х			X
	Storage Complex Development Planning																																		
7.1	Develop conceptual level design study	4	24																								М	х	X				X		
7.2	Assess technical & economic feasibility of storage complex	4	24																								N	x	x						

Current Status

Table 4. P	rojeo	et Milestones		
Task / Subtask	I D	Milestone Title & Description	Planned Completion Month	Status
1/1.1	A	Project Kickoff Meeting	2	Complete
1/1.2	B	Updated Project Management Plan	2	Complete
2 / 2.1	С	Updated Community and Stakeholder Engagement effort	3	Complete
2 / 2.0	D	CBP Mid Project Update Meeting	12	Ongoing
2 / 2.1	Е	DEIA SMART (per DEIA Plan)	12 & 24	Ongoing
2 / 2.3	F	Energy and Environmental Justice Assessment	24	Ongoing
3 / 3.2	G	Risk Mitigation Plan	23	Ongoing
4 / 4.1	н	Obtain Stratigraphic Well Drilling and Seismic Permits	6	Complete
5 / 5.2	I	Complete Stratigraphic Test Well	10	Delayed
5/5.4	J	Complete 2D Seismic Survey	14	Complete
6 / 6.2	К	Storage complex characterization and assessment report	20	Ongoing
6/6.3	L	Detailed Site Characterization Plan	23	Ongoing
7 / 7.1	М	Preliminary CO ₂ management & monitoring plan, including coverage for transport of CO ₂	24	Ongoing
7 / 7.2	N	Technical and economic feasibility evaluation of a proposed CO ₂ storage project	24	Ongoing

Table 7: Gantt Chart with Team Responsibilitie Letters refer to milestones in Table 4.	s by Tas	sk.												dget	Peric	od 1													,	Orga	nizat	ion		
	Start	End	10/23	11/23	12/23	01/24	02/24	03/24	04/24	05/24	06/24	07/24	08/24	09/24	10/24	11/24	12/24	01/25	02/25	03/25	04/25	05/25	06/25	07/25	08/25	09/25	S		C		SN		IS	
# Task Name	Month	100000	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	ISGS	HM	UIUC	PC	IGWS	IC	GTSI	ISU
1.0 Project Management and Planning																																		
1.1 Manage all project activities, objectives, & milestones	1	24	A																								x							
1.2 Project management plan	1	2		B																							Х							
1.3 Data management	1	24																									х	X	X	X	Х	X	X	X
1.4 Access to geologic materials / samples	1	24																									х							
2.0 Community Benefits Plan																																_	_	
2.1 Community and labor engagement	1	19			С									D													х	X	X				X	
2.2 Investing in job quality and a skilled workforce continuity	2	8																									x	x	x				x	
2.3 Diversity, equity, inclusion, and accessibility	1	19	1										E	D						r j				11	E	1 1	Х	X		X	х	X	X	X
2.4 Justice40 Initiative	1	19					1)							D			1 1			l I	F						х	X	X				X	
3.0 Risk Assessment and Monitoring																						0 S												
3.1 Conduct risk assessment	2	23			. 1																						х	Х						
3.2 Develop risk mitigation & monitoring strategies	2	23																							G		x	x						
4.0 Subsurface Characterization			-																~ ~ ~															
4.1 Conduct pre-drilling site assessment & obtain drilling & seismic acquisition permits	1	6						н																			x		x	120.00	1000			x
4.2 Develop conceptual geological model	3	21			1 1																						Х			X	х			X
4.3 Analyze well data	9	21																						(Х		X		х			X
5.0 Drilling and Data Acquisition				201 	-25. IN		·• •			~	-	31 - C		-		-					G - 18			10	· · · · · ·									
5.1 Design seismic acquisition & well drilling program	1	6																									x	x	x	x	x			x
5.2 Drill & construct stratigraphic test well	8	10										Ι															х	X		X				X
5.3 Collect well data	11	14																									Х	X	X	X				X
5.4 Conduct regional 2D seismic survey	11	14														J											Х			X	х			
6.0 Storage Complex Modeling																12 X																		
6.1 Develop geocellular models	2	20																									Х		X		Х			X
6.2 Develop reservoir models	2	20																				K					Х							
6.3 Identify future data requirements	11	23																							L		Х		Х		Х			X
7.0 Storage Complex Development Planning						_																				_				_				
7.1 Develop conceptual level design study	4	24																								М	х	X				X		
7.2 Assess technical & economic feasibility of storage complex	4	24																								N	x	x						

Task 2: Community Benefits Plan

- Planned/undertaken community engagement
 - To occur after CarbonSAFE phase II
 - Tri-fold flyers developed and distributed •
 - Coordination with Heidelberg Materials to prepare for future phases
 - Potential interviews with HM staff, policy makers, community advisory panel
- Progress towards SMART milestones
 - Year 1: Assess state of DEIA within project team:
 - · DEIA assessment survey developed and distributed. To be analyzed next month.
 - Year 2: Summarize and guantify participation of interns and student researchers from groups underrepresented in STEM:
 - List of interns and student researchers compiled. To be tracked throughout project.

Project Facts · Assess geology to determine the feasibility of

- carbon storage at Mitchell · Well drilled for geological research At 7,200 feet deep it will be one of the
- deepest in Indiana · Collect 600 feet of core (rock samples)
- · Collect sophisticated geophysical well logs · Rare opportunity to examine the deep geology in south/central Indiana
- · Develop a 2-way engagement strategy to help understand community concerns and facilitate communication
- Project Timeline
- Winter 2023 Project starts · Summer 2024 - Drill research well and gather data
- Fall 2025 Finish reservoir simulations and
- conclude project Spring 2026 – Permanently plug and abandon well

About the Project

conducting a preliminary assessment of the carbon

The Illinois State Geological Survey (ISGS) is

storage potential of the geology beneath the

Heidelberg Materials cement facility in Mitchell.

Indiana. This project is part of a Department of

of Mitchell.

Energy funded CarbonSAFE program and includes

drilling a research well about three miles northeast

The well, Heidelberg #1, will reach an estimated

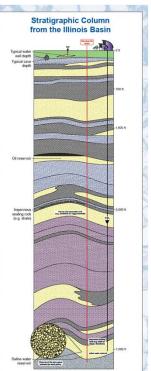
deepest in the state, and will produce rock cores.

logs that will provide an exciting opportunity to

Basin. A major focus will be on assessing the

geologic properties of the deepest sandstones.

dolomites for their carbon storage potential and


overlying shales for their sealing capacity. The well

fluid samples, and sophisticated geophysical well

learn about the deep geology of the eastern Illinois

depth of over 7.200 feet, making it one of the

ILLINOIS STATE GEOLOGICAL SURVEY

ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES

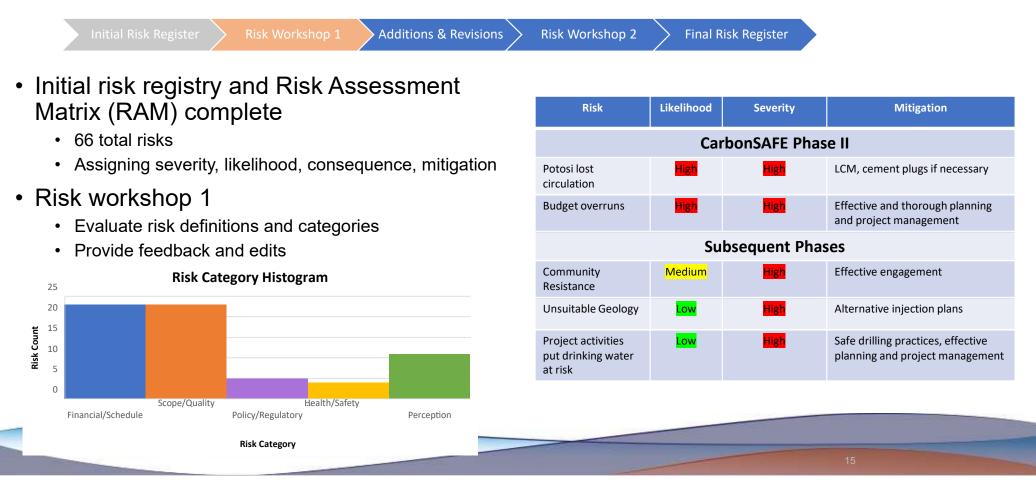
Task 2: Community Benefits Plan

Background

- Developed annotated bibliographies referencing academic journal articles, professional reports, and case studies on best practices in public engagement around CCUS and public perceptions of CCS
- · Generated preliminary list of stakeholders common to CCUS projects

Site-Specific

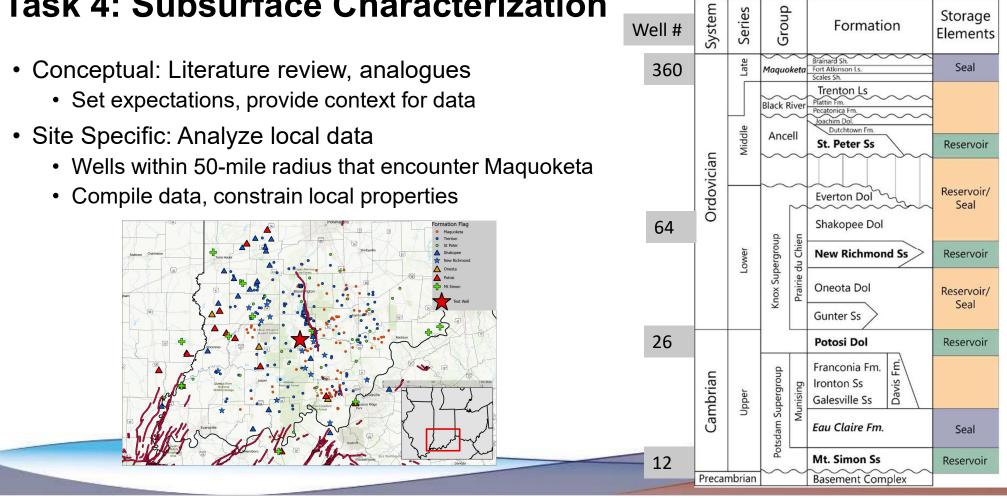
- Developing social site characterization (PESTEL and Ejscreen) of 10-mile radius around Mitchell site
- Stakeholder analyses & mapping of Mitchell to reflect best practices in public engagement around CCUS


Political Economic		Social	Technological	Environmental	Legal
 State legislation supportive of CCS State elected officials supportive of CCS Need to better understand local politicians' opinions of CCS 	 Economy recovering from pandemic Inflation expected to increase project costs Significant financial incentive for CCS with 45Q Importance of Heidelberg Materials to local economy Need to model economic benefits of project 	 Need for stable employment and investment Concerns regarding population with less than HS education, low life expectancy, prevalence of heart disease, number of residents with disability, access to broadband Internet, food insecurity Need to better understand public opinions of CCS, Heidelberg Materials, and climate change 	 Storage potential of saline aquifers Relative safety of process Need for local expertise Need to determine spread of CO2 in saline aquifers and to assess salinity of brine and porosity of rocks 	 Concerns about number of impaired waters, brownfields, leaking underground storage tanks, emissions reductions Need to ensure injection sites are below aquifers 	 Legal rights to pore space are well-defined to property owner CCUS project developers can use eminent domain Responsibility for injection site passes to state after 12 years or when injection stops Need to identify spread of plume and impacted property owners

ILLINOIS STATE GEOLOGICAL SURVEY

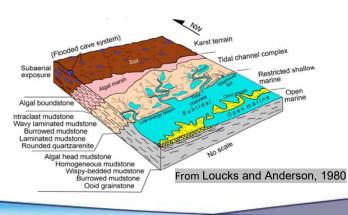
ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES

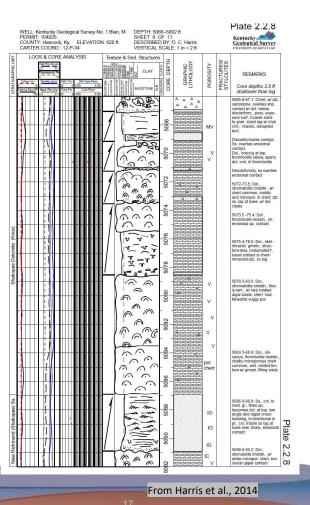
Task 3: Risk Assessment and Monitoring



Storage

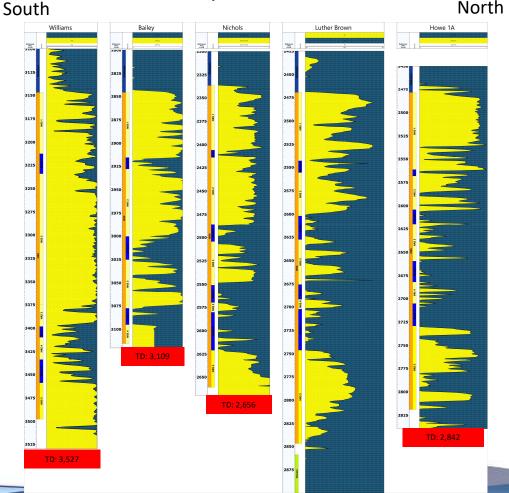
Cambro-Ordovician Storage Complex


Task 4: Subsurface Characterization



New Richmond-Conceptual Model

- Western Kentucky carbon storage test @ Marvin Blan (70 miles south)
 - Core = Tidal channel complex with cyclic depositional cycles
 - · Sandstone has consistently high porosity/permeability
 - · Variability in dolomite
- Analogues: Ellenburger, Arbuckle, Roubodoix
 - Characterization techniques
 - Flow unit geometry
 - Pitfalls
 - Uncertainties

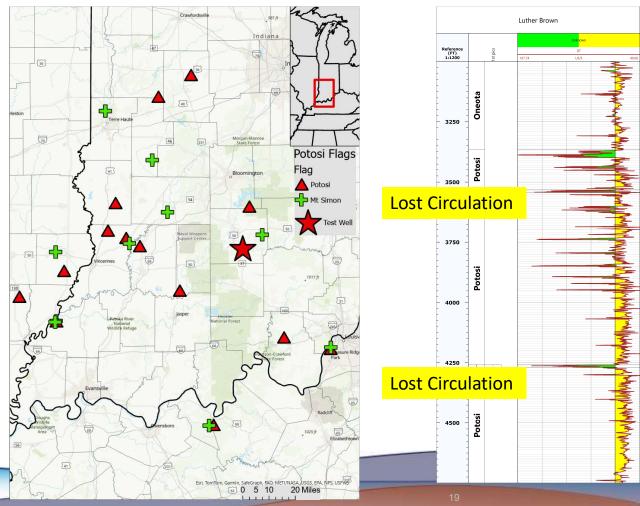


New Richmond: Site Specific

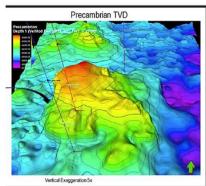
- Pre-project expectations based on closest well (Bailey) and Harris et al., (2014)
 - 250-300 feet New Richmond, 50% net
- Developed methods to calculate %Quartz/Dolomite based on Pe or NPHI + RHOB logs
- Several laterally continuous sand units in study area that stack to the south
 - Bailey and Harris et al., (2014)
 underestimate thickness

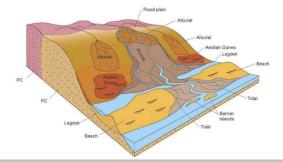
ILLINOIS STATE GEOLOGICAL SURVEY

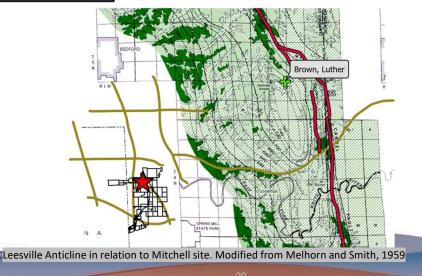
ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES



TD: 6,727


Potosi


- Only a few wells encounter Potosi
 - Can't correlate vuggy intervals over long distances
- Luther Brown well
 - 9 miles NE
 - Drilled in 1959 (poor logs)
 - Lost circulation twice
 - Dt log suggests vugular intervals over 1,000-foot interval

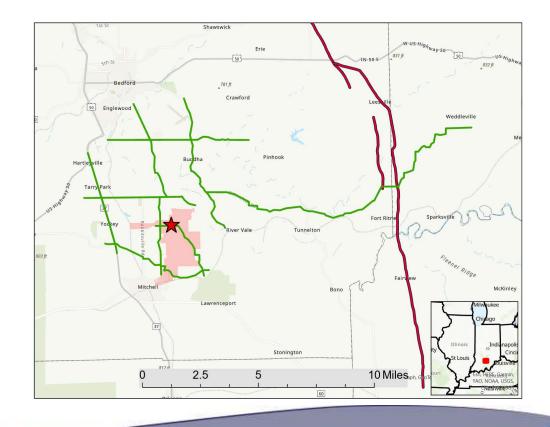


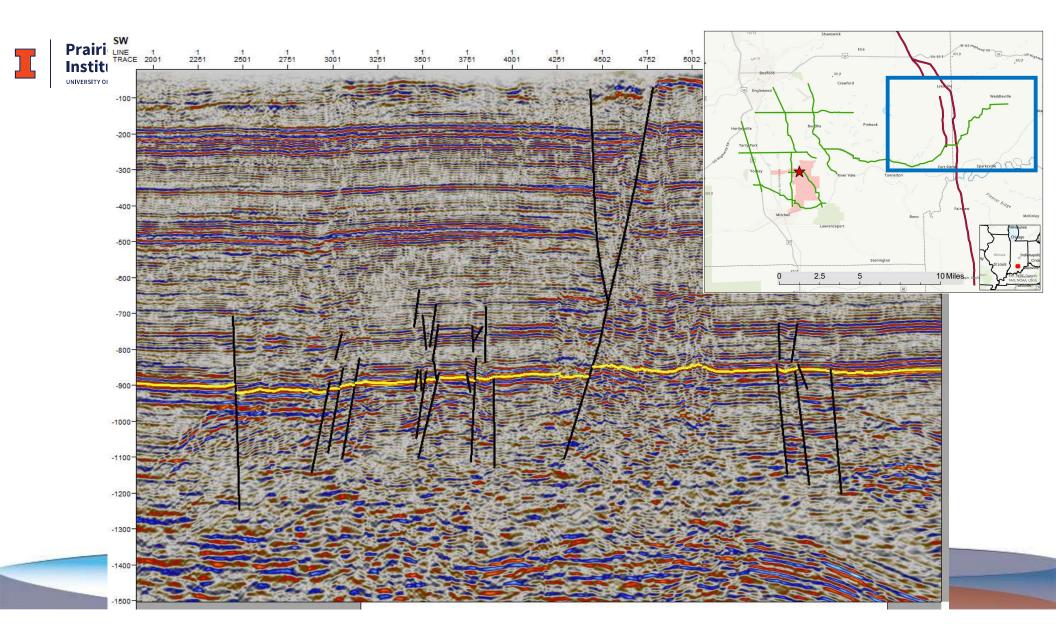
Precambrian structure at IBDP based on 3D seismic. From Greenberg, 2021

Depositional model of the Mt. Simon from Freidberg et al., 2022

Mt. Simon

- Luther Brown well (9 miles NE)
 - Only well within 30 miles that encounters Mt. Simon (40 to lower Mt. Simon)
 - Sample descriptions available:
 - 450 ft of reddish, medium-coarse grained, poorly consolidated sandstone is present at the base of the Mt. Simon Sandstone
 - Logs suggest some permeability
- IBDP and ensuing studies found porosity preservation due to clay coatings from Precambrian highs
- Proximity to Leesville Anticline may improve Arkosic zone potential

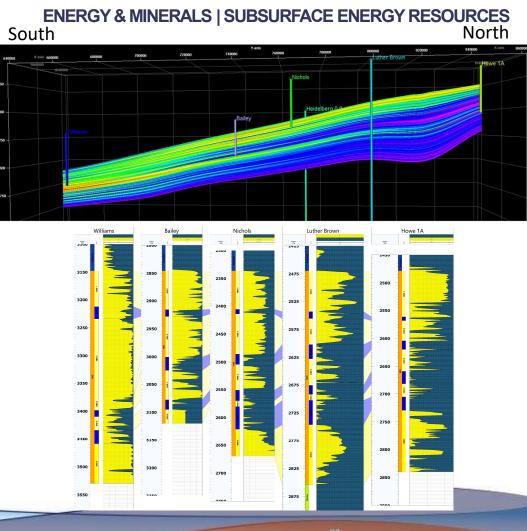

Task 5: Field work


Seismic

- 54 linear miles acquired in June 2023. Processed in October 2023
- Captured Mt. Carmel Fault
- Some faulting observed in Pre Cambrian and Lower/Middle Mt. Simon, but none in Knox or seals

Stratigraphic test well

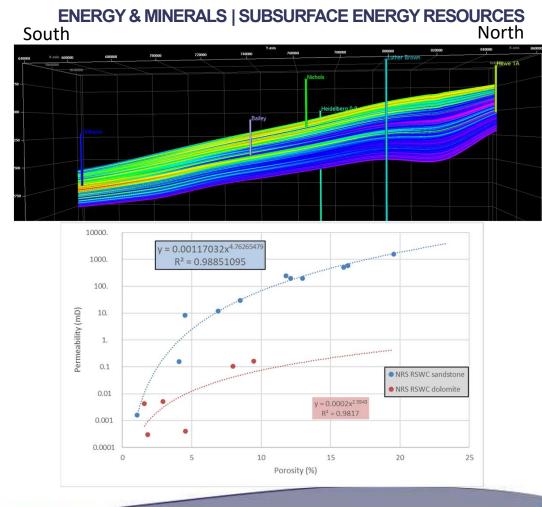
- Permit acquired
- Vetting drilling contractors



Geocellular Models

- Mt. Simon/Potosi
 - Waiting on test well
- New Richmond
 - %Q model (Sand/Dolomite) matches expectations

ILLINOIS STATE GEOLOGICAL SURVEY



Geocellular Models

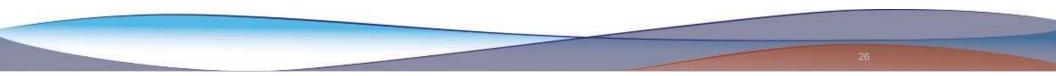
- Mt. Simon/Potosi
 - Waiting on test well
- New Richmond
 - %Q model (Sand/Dolomite) matches expectations
 - Density porosity matrix density scaled to %Q
 - $DPHI = \frac{\rho_{mixed} RHO \quad (welllog)}{(\rho_{mixed}) 1}$
 - $\rho_{mixed} = 2.87 (\% Q(2.87 2.65))$
 - Porosity to permeability transforms based on Marvin Blan core

ILLINOIS STATE GEOLOGICAL SURVEY

Accomplishments

- CBP
 - Initial A&V meeting
 - DEIA survey developed and distributed
 - Preliminary PESTLE analysis complete
- Preliminary risk register complete
 - 1st workshop scheduled for September
- Pre-drill geologic characterization complete
 - New Richmond has better potential than anticipated
- Preliminary geocellular model for NRS complete
- Field work
 - 2D seismic survey complete
 - · Test well to be drilled this year

ILLINOIS STATE GEOLOGICAL SURVEY ENERGY & MINERALS | SUBSURFACE ENERGY RESOURCES


Next Steps

- <u>Drill well</u>
- Incorporate well data
 - Conceptual geologic model
 - Geocellular models
 - Petrophysical properties
 - Well tie
 - Input parameters for reservoir simulations
- CBP
 - SMART 1 milestone
 - Mid project A&V meeting

Thank you

Questions?

