Energy-Efficient Direct Air Capture System for High-Purity CO₂ Separation

DE-FE0032128

Joo-Youp Lee University of Cincinnati

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

- Funding: DOE share \$1,499,999 and cost share \$393,650
- 2) Overall Project Performance Dates: 10/1/2021 12/31/2024
- Project Participants: University of Cincinnati (UC), BASF, Trimeric
- 4) Overall Project Objectives: demonstrate Recipient's DAC sorbent technology to capture CO₂ from ambient air and separate it at high purity.

Technology Background

- Modified amine-based sorbent technology with low desorption energy requirement and resistance to thermal and oxidative degradations
- Sorbents with high capacities, fast kinetics, small mass-transfer resistances, and low desorption energy requirement
- State-of-the-art coating technology for scale-up from powdered form to monolithic form
- High throughput of air flow with minimum pressure drop through sorbent-coated monolith in passive air contactor
- Passive air contactor without energy requirement during adsorption

Technical Approach/Project Scope

- Task 3: Manufacture CO₂ sorbent (UC)
 - ✓ Manufacture CO₂ sorbent
 - ✓ Evaluate long-term lab-scale performance
- Task 4: Manufacture sorbent-washcoated monolith structure (UC + BASF)
 - Develop sorbent-washcoated monolith
 - ✓ Determine cell size and length
- Task 6: Evaluate performances of sorbent-washcoated monolith in air contactor system (UC)
 - \checkmark Measure temperature, humidity, velocity, and CO₂ concentration
 - Evaluate performances
- Task 7: TEA and LCA (UC + Trimeric)
 - ✓ Development of TCM and LCI
 - ✓ Assessments of DAC technology

Technical Approach/Project Scope

Major milestones

Task	Milestone Title & Description	Planned Completion Date
3	Manufacture of 10 kg of CO ₂ sorbent	PSD+23 months
4	Manufacture of two sorbent-washcoated monolith prototypes	PSD+24 months
6	CO_2 capture efficiency, energy requirements, and overall volumetric CO_2 productivity	PSD+39 months

Major Success criteria

- 70% average CO_2 capture efficiency in passive air contactor with monolith with pressure drop of <100 Pa and <75 kJ/mol CO_2
- Overall volumetric productivity of $\sim 2 \pmod{CO_2/(hr \times V(l))}$

Project Risks and Mitigation Strategies

- Low performance of sorbent-coated monolith: BASF will attempt many different coating formulations
- Low DAC system performance: parametric testing will be carried out to investigate the effects of parameters (i.e., operating conditions, materials, etc.)⁵

Modified PEI Sorbent

¹³C NMR spectrum for (a) modified amine and (b) distribution of amine states

- 1) Increased resistance to thermal and oxidative degradations by lowering the basicity and increasing steric hindrance.
- 2) Reduced bonding strengths leading to low heat of desorption with decreased capacity
- 3) UC filed U.S. patent/PCT for 10 modifications.

Performance Evaluations in TGA: 10 cycles

Performance Evaluations in TGA: 10 cycles

Capacity decreases with an increase in level of modification.

Adsorption: 400 ppm CO_2 in dry air at 30 °C and Desorption: N_2 at (a) 100 and (b) 120 °C

Adsorption: 400 ppm CO₂ in Dry Air at 30 °C and Desorption: N₂ at 100 °C

Heat of Desorption for Powdered Sorbents

Sorbents	Heat of desorption (kJ/gmol CO ₂)	Energy savings relative to unmodified amine sorbent (%)*	
Unmodified amine sorbent	73.74	0	
Modified amine sorbent 1	56.87	-22.9	
Modified amine sorbent 3	34.77	-52.8	
Modified amine sorbent 4	35.83	-51.4	
Modified amine sorbent 5	31.82	-56.8	

Performance Evaluations of Small Block (3 cm x 3 cm x 15 cm)

Step 1

CO₂ Desorption by JH between 80-90 °C from Unmodified PEI/Alumina Block (Block was saturated under 175 LPM air, SV: 77,778 hr⁻¹, 50% RH, 20 °C)

- Vacuum pressure of -28" Hg (full vacuum is -29.9" Hg)
- Initial air present inside the reactor: ~6.3%

CO₂ desorption by JH between 80-90 °C form Modified PEI-2/Alumina Block (Block was saturated under 175 LPM air, SV: 77,778 hr⁻¹, 50% RH, 20 °C)

- Vacuum pressure of -28" Hg (full vacuum is -29.9" Hg)
- Initial air present inside the reactor: ~6.3%

Working Capacity and CO₂ Recovery by Joule Heating between 80-90 °C

- Vacuum pressure of -28" Hg (full vacuum is -29.9" Hg)
- Initial air present inside the reactor: ~6.3%
- RH: ~50%; CO₂ purity: ~93-94%; SV: 77,778 hr⁻¹

CO₂ desorption between 80-90 °C

Modified PEI-2/Alumina block

Des	Adsorption capacity			Working	Residual CO ₂	Total CO ₂		CO ₂
T (°C)	mmol CO ₂ / g sorbent	mmol CO ₂ / monolith	Working capacity by JH (mmol)	capacity (mmol CO ₂ / g sorbent)	desorbed by $\tilde{N_2}$ (mmol)	desorbed (mmol)	CO ₂ recovery from JH (%)	purity (%)
80	1.19	31.96	34.42 (1.51 g)	1.28	6.76	41.18	84	94
85	1.21	32.45	36.76 (1.62 g)	1.37	4.52	41.28	89	93
90	1.17	31.35	39.11 (1.68 g)	1.42	1.95	41.06	95	94

PEI/Alumina block

Des	Adsorption capacity			Working	Residual CO ₂	Total CO ₂		CO ₂
T (°C)	mmol CO ₂ / g sorbent	mmol CO ₂ / monolith	Working capacity by JH (mmol)	capacity (mmol CO ₂ / g sorbent)	desorbed by N ₂ (mmol)	desorbed (mmol)	CO ₂ recovery from JH (%)	purity (%)
80	1.68	46.66	37.21 (1.64 g)	1.34	23.76	60.97	61	93
85	1.67	46.31	39.24 (1.73 g)	1.41	21.78	61.02	64	93
90	1.66	46.07	45.26 (2.01 g)	1.69	15.09	60.85	74	94

- PEI block has ~30% higher saturation capacity than modified PEI-2 block.
- Adsorption T: 20 °C
- **RH:** 50%
- SV: 77,778 hr⁻¹

MS Analysis of Gas Desorbed by Joule Heating at 90 °C

Tech-grade CO₂ gas compositions:

- CO₂: >99.8%
- O₂: < 20 ppm
- Moisture: < 20 ppm

Thermal Stability of Modified PEI-2 Sorbent between 90-100 °C over 100 Cycles

- Thermal degradation at ≤ 90 °C seems to be negligible for modified PEI-2 sorbent.
- Adsorption under 400 ppm CO₂ in dry air at 30 °C
- Desorption under N₂

Thermal and Oxidative Degradations in Air

• 1,670 cm⁻¹: either imine (C=N) or carbonyl (C=O) group.

• 1,601 cm⁻¹: NH₂ deformation of primary amines.

Adsorption and Desorption Profiles of Small Block Testing

Working Capacity of Modified PEI-2 on Small Monolith

- ✓ Goal: 100 cycles for PEI and Modified PEI-2 blocks
- Flowrate:175 LPM air; SV: 77,778 hr⁻¹; RH: ~50%; Adsorp. T: 20 °C; Desorp. T: 90 °C; Switch from desorption to adsorption at 50 °C
- ✓ Adsorption time for Cycle 1-13: 90 min for >~95% adsorption capacity
- ✓ Adsorption time for Cycle 14-20: 30 min for ~70% adsorption capacity

Evaluation of Large Monolith Block in PAC

Wind Speeds without Passive Air Contactor (PAC)

Linear Velocity inside DAC System

- ✓ T: 0-40 C; RH: 20-80%
- ✓ Wind speeds: ~3-8 m/s
- ✓ LVs at monolith outlet: ~0.6-4 m/s

✓ Single block with 64 cpsi
✓ RH: ~50%; Wind speed: ~7 m/s; Initial vacuum pressure: -28" Hg
✓ CO₂ purity: 94 ±1%

Cycle #	Avg. LV (m/s)	SV (h ⁻¹)	Pressure drop (Pa)	Adsorption T (°C)	Desorption capacity (mmol CO ₂ /g)
1	0.88	28,746	28	21	0.69
2	0.70	22,862	28	21	0.55
3	1.05	34,311	27	21	0.55
4	0.76	24,836	29	30	0.62
5	0.75	24,498	27	30	0.51

✓ Poor heat-transfer property of monolith is an issue for Joule heating.

- ✓ Total 2,025 cells (= 45×45); # of cells inside dashed line: 529 (= 23×23)
- ✓ Maximum recoverable CO_2 from outside dashed line = <74%
- ✓ Plan for desorption: vacuum convection oven

Lessons Learned

- 1. Modified PEI sorbent technology has potential for separating high-purity CO_2 at high working capacity with high CO_2 recovery from desorption at 85-90 °C.
- Modified PEI sorbent technology has potential for switching from desorption to adsorption at ~50 °C without significant degradations.
- 3. Coating is critical when it needs to be used for structured system.
- 4. Poor heat-transfer property of cordierite is a hurdle for separation when non-steam direct injection-based desorption is used.

Plans for future testing/development

- Task 6: Performance evaluations
 - ✓ 100 cycles of small blocks with PEI and modified PEI-2 (weight, purity, degradation (MS, IR))
 - ✓ Large blocks

Parameters	Values		
Block samples	Two modified PEI vs. PEI		
T (°C)	0, 15, 30		
RH (%)	20, 50, 80		
Wind speed (m/s)	~3, 5, 7		

- Task 7: TEA and LCA (UC + Trimeric)
 - ✓ Development of TCM and LCI
 - ✓ Assessment of DAC technology
- Future Plan
 - ✓ Hybrid monolith
 - ✓ Different structured DAC system with improved heat transfer properties $_{27}$
 - Partnerships for commercialization

Summary Slide

- Advanced sorbent technology from powdered form to structured form showing high CO₂ recovery and purity at 80-90 °C with resistance to degradations
- Successful development of sorbent-coated monolith for scalable DAC system
- Systematic and rational PAC design using CFD confirmed with experimental data
- Need for development of structured system with improved heattransfer properties for scaled DAC system
- Open to partnerships for different structured system, scale-up, and commercialization