

HOUSTON AREA DAC HUB



Dr. Amy Linsebigler DE-FE0032380

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

GE Vernova Advanced Research Mission

POWER

Decarbonize

Carbon Capture, 100% H₂, eFuels Next Gen Nuclear

WIND

Accelerate

Scalable Workhorse Product, Al Enabled Service Tech

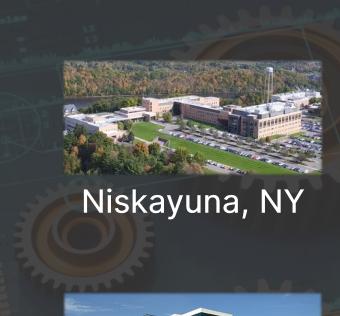
ELECTRIFICATION

More Resilient

A Secure, Flexible & Resilient Grid

Advanced Research at a GLANCE

TALENT


LOCATIONS

TECH CAPABILITIES

Global Researchers

70% PhDs

Bangalore, India

Aero & Thermosciences

AI, Robotics & Software

Controls & Optimization

Electrical & Power Systems

Embedded Systems & Cybersecurity

Material Chemistry & Physics

Materials, Coatings & Modeling

Mechanical Systems & Design

GE VERNOVA

Project management, DAC technology, Pre-FEED study, prime

Site owner, sequestration services

Renewable energy supplier, nuclear operator

Small Modular Reactor

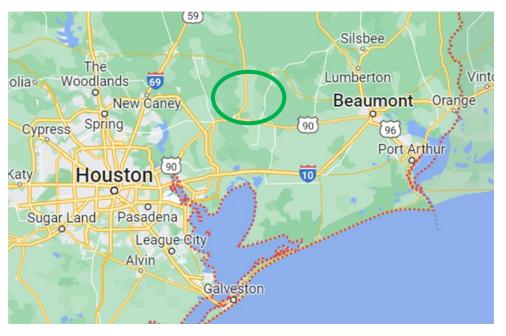
Community benefits

LCA/TEA

Houston DAC HUB Project Team

- **Project Execution**
- Business & Finance plan
- Pre-FEED study
- DAC Technology & Utilization
- Sequestration
- Site ownership

Pore space Real-estate

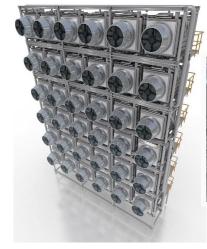

- Renewable RECs via CORe+
- Largest Operator of Nuclear power plants in the US
- Pre-FEED study SMR
- Bureau of Economic Geology
- Community outreach
- LCA Analysis
- **GREET** model

Phase 0a – BP1 5/24-1/25 Phase 0b - BP1 2/25-4/26 24 months

Total Cost \$3,316,234 Federal \$2,553,500 Cost Share \$762734

TECHNICAL APPROACH

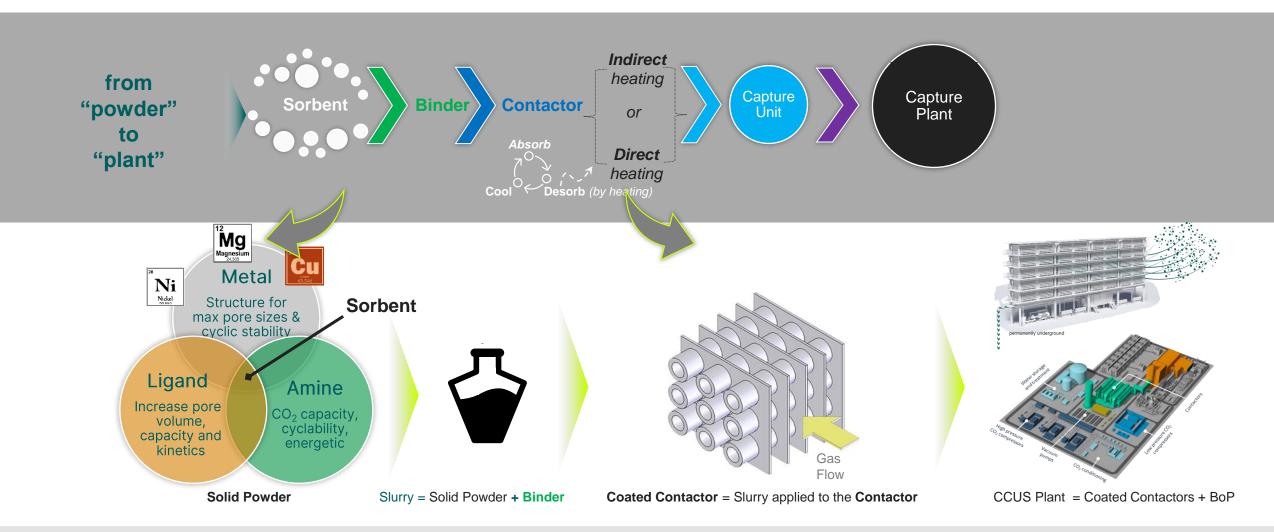
Three Top Level Objectives


Business/Financial Plan

- Ownership Structure (0a)
- Business Plan
- Financial Plan

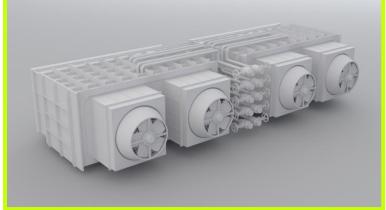
DAC Hub Concept

- GE Vernova Sorbent based DAC Technology
- GE Vernova Utilization Technology
- GE Hitachi Small Modular Reactor Design


Community Benefits

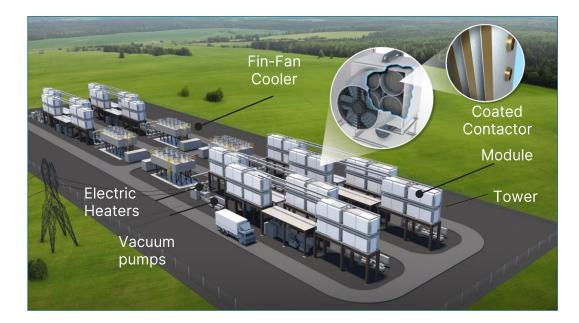
- Engaging Community and Labor
- Quality Jobs
- Advance DEIA
- Justice 40

Sorbent-based carbon capture system overview

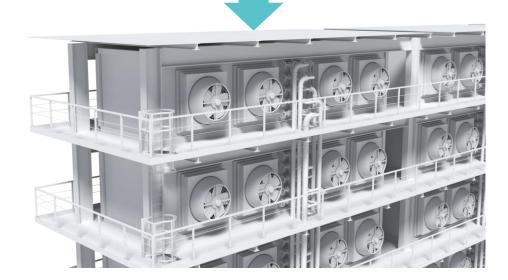


Selecting direct vs. indirect drives all system design decisions

Carbon Capture & Atmospheric Water Extraction... "Powder to Plant"



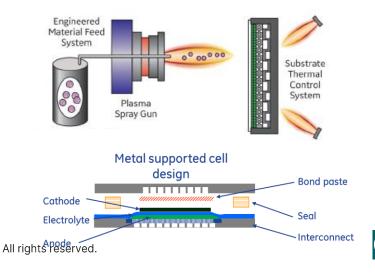
Materials Development

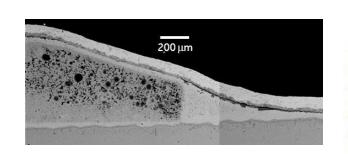

Rapid Testing

Manufacturing and Maintenance

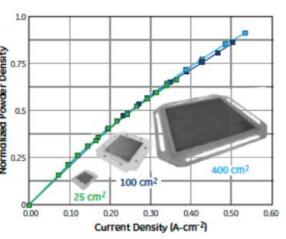
Capture Unit

Capture Plant

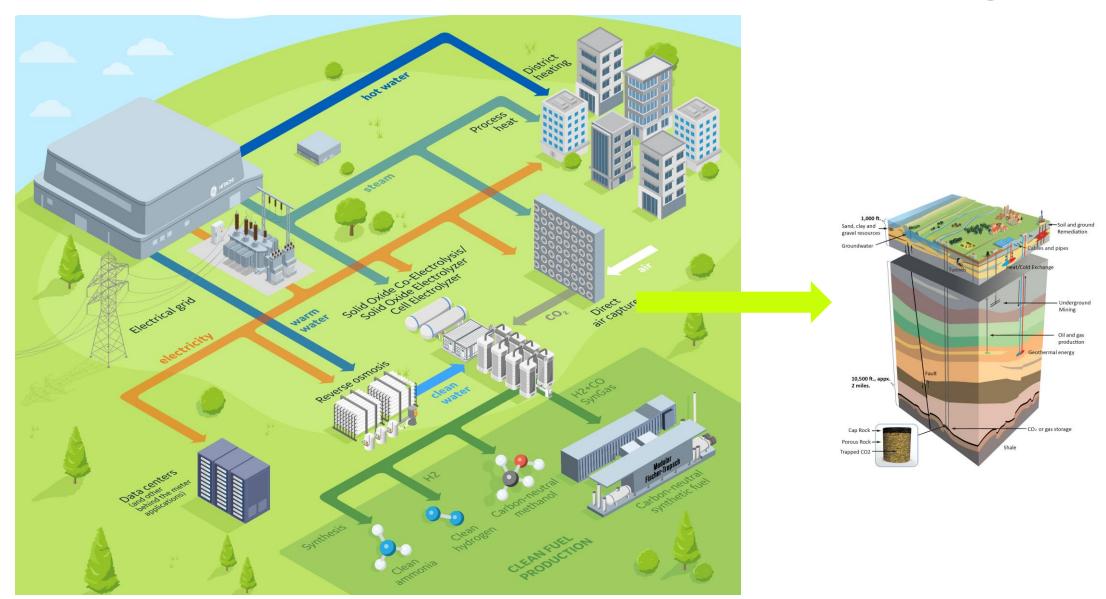

Key Solid-oxide Co-electroysis Features


Feature **Technical Advantages** System Advantages Next-Best Alternative **Highest Efficiency** Low temperature PEM H₂ High temperature Lowest power requirement (>99% with steam) electrolyzer + Reverse Water reaction Small footprint **Gas Shift Reactor** High reaction rate SOCC with ceramic substrate Integral fuel-side sealing Small footprint Thermal spray coated and bulk ceramic processing. onto metal substrate Scalable to large area Reduced controls complexity

Thermal Spray Process – High deposition rate and area-scaleable



Integral fuel-side sealing



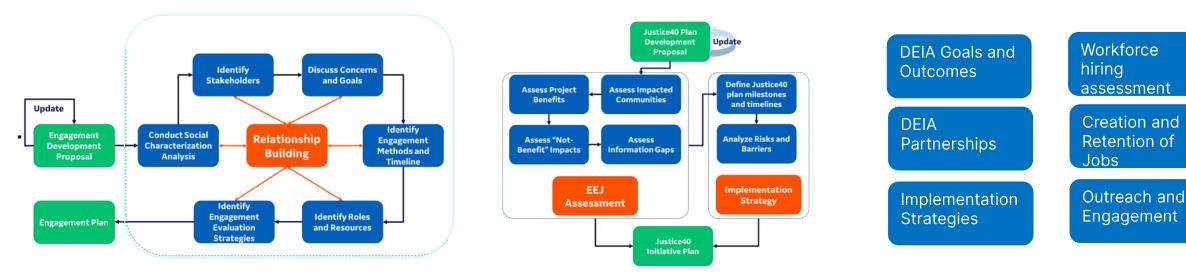
No change in performance with scaling

Integrated System for Carbon Removal and Conversion

Risk Management

Perceived Risk	Probability	Impact	Overall	Mitigation/Response Strategy
Team unable to form an acceptable ownership structure for the DAC Hub	MED	HIGH	HIGH	If this occurs, it will be very difficult for the team to continue with this DAC Hub approach. The team will need to regroup, get reorganized and prepare to apply to the new FOA in 2025 with a different approach
DAC technology is not at TRL by the end of Phase 0b	LOW	MED	LOW	The team will continue to engage other DAC companies that could be part of the Hub and take over the anchor position if necessary.
A sound business case cannot be developed	MED	MED	MED	Given the immaturity of the DAC technologies it maybe that the initial high-level economics are challenging but there will be opportunities to continue to improve the technology to improve the economics
Team is unable to secure cost share for Phase I	MED	HIGH	HIGH	While the team might be able to successfully complete Phase 0b, without follow on commitment Phase 1 will not be possible. The team will make every effort to secure follow-on funding for this Hub.
Team members back out pre- award or post-award	MED	MED	MED	With a diverse set of participants, there may be a change in business priorities. The team will need to continue to engage a range of companies about the possibility of joining the Hub in order ensure a stable team can see this program through to the end.

© 2023 GE Vernova and/or its affiliates. All rights reserved.



COMMUNITY BENEFITS

Community Benefits Plan

Community Benefits Plan Development Proposal (CBPDP) -> Community Benefits Plan (CBP)

Community Engagement Workflow

Justice 40 Workflow

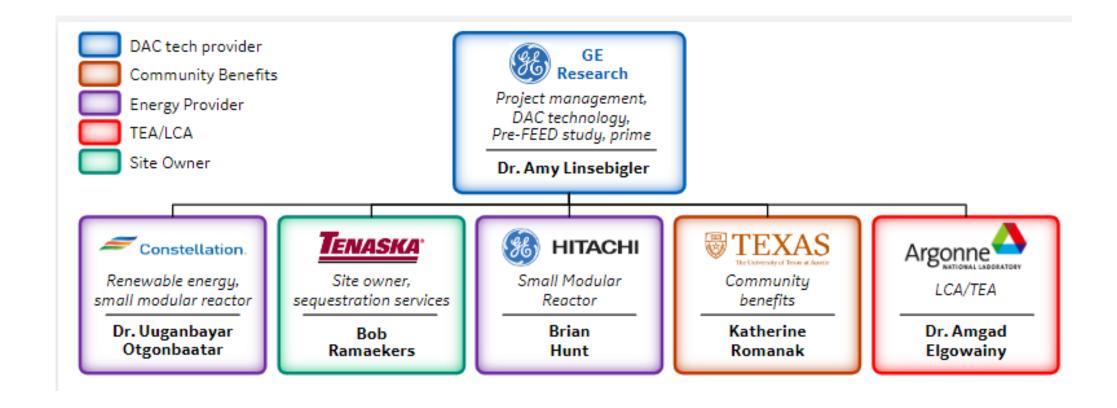
DEIA Investing in American Workforce

University of Texas Bureau of Economic Geology will sub-contract with Lamar University to develop a plan for community outreach, quality jobs plan, DEIA training and Justice 40 Initiative.

© 2023 GE Vernova and/or its affiliates. All rights reserved.

BACKUP

High Level Tasks



PB2

			12345678	9 10 11 12 13 14 15 16 17 18 19 20 21 22 2
Task 1	Project Management		12343070	10 11 12 13 14 13 10 17 10 13 20 21 22 2
	Task 1.1	Project Management Plan		
	Task 1.2	Business Plan		
	Task 1.3	Financial Plan		
	Task 1.4	Tech Maturation Plan		
	Task 1.5	Community Benefits Plan		
Task 2	Safety, Security, Reg			
	Task 2.1	Safety history/culture/EHS		
	Task 2.2	Permitting Workflow		
Task 3	LCA/TEA			
Task 4	DAC Hub Concept			
	Task 4.1	DAC Hub Description		
	Task 4.2	DAC Tech Selection		
	Task 4.3	DAC Conversion Selection		
	Task 4.4	DAC Hub Data Table		
Task 5	DAC Hub Design			
	Task 5.1	DAC Hub Concept		
	Task 5.2	DAC Tech Description		
	Task 5.3	CO2 Conversion Tech Desc		
	Task 5.4	DAC Hub Table		
	Task 5.5	pre-FEED study		
	Task 5.6	DAC Hub BOP Design		
	Task 5.7	Storage Field Status		
	Task 5.8	Inegrated project schedule		

DAC Hub Team

