

Pelican Gulf Coast Carbon Removal

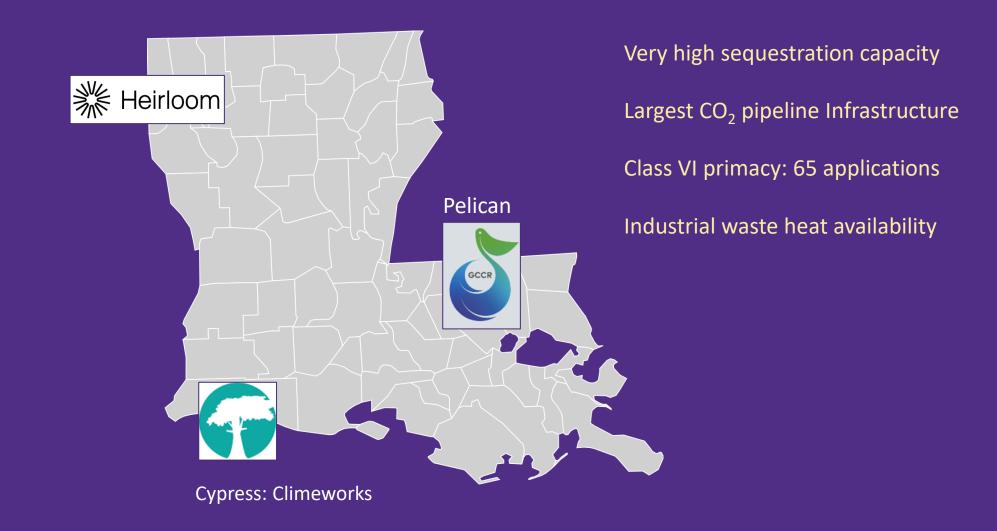
DE-FE0032381

John Flake LSU Office of Research johnflake@lsu.edu

3

Project Overview

- Funding
 - DOE: \$3 million
 - Non-DOE Funding: \$1.9 million
- Overall Project Performance Dates
 - June 2024-March 2026
- Project Participants
 - LSU, Shell, University of Houston



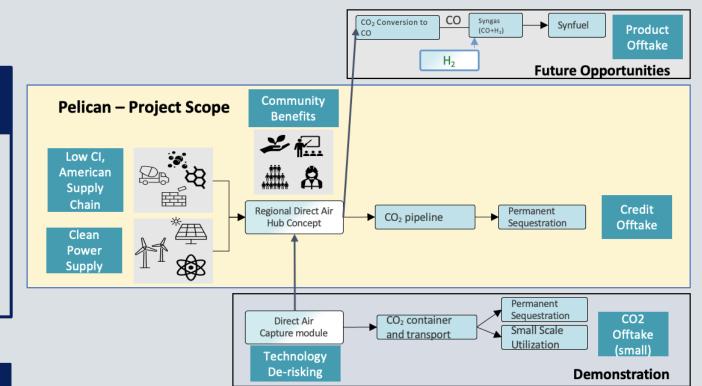
Pelican-Gulf Coast Carbon Removal – Louisiana State University (Baton Rouge, Louisiana) intends to evaluate the feasibility of building a DAC hub in Louisiana that would remove CO₂ already in the atmosphere and permanently store it. The Pelican consortium, including the University of Houston and Shell, proposes developing technologies that can enable accelerated and replicable carbon removal and permanent storage in ways that protect and generate workforce opportunities.

Louisiana DAC Activity

Project Team

Key/Senior Personnel	Position/Title	Role	
Robert Twilley	LSU - VP Office of Research & Development	Community Benefits Development Plan	
Greg Upton	LSU - Executive Director - Center for Energy Studies	Community Benefits Development Plan, Community Engagement, Localized Economic & Tax Impacts, and input/feedback on LCA/TEA	
Sarah Riling-Hall	Shell - DAC Business Manager	Technical Lead	
Saratu Mohammed	Shell - Project Manager	Project Manager	
Stephen Tessarolo	Shell - Front-end Development Manager	Project development	
Joe Powell	University of Houston – Executive Director, Energy Transition Institute	Technology evaluation, TEA, LCA.	
Margaret Reams	LSU – Professor, Department of Environmental Sciences	Community Benefits Development Plan	
Tim Slack	LSU – Professor, Department of Sociology	Community Benefits Development Plan	
Karsten Thompson	LSU – Professor, Department of Petroleum Engineering	Technical input	
Brian Snyder	LSU – Associate Professor, Department of Environmental Sciences	Community Benefits Development Plan	

Pelican – DAC Hub Vision


Develop and de-risk an integrated methodology for developing DAC hubs

- Replicable at other sites along the Gulf Coast, other parts of the US, and globally
- Accelerate carbon capture technology development
- Address engineering challenges of DAC hubs in collaboration with participating technologies

GCCR

 Evaluate risks, technical, economic and social considerations related to DAC hubs

Work with local communities to identify and address concerns, impacts and opportunities related to DAC hubs in ways that lead to shared benefits and positive working relationships.

LSU

Campus CO₂ well and flow loop installation

ENABLED R&D (WELLBORE)

Wellbore flow and fluid mechanics Well control for CCS Detection of simulated leaks Fiber-optic sensing for CO2 storage Downhole tools and instrumentation Monitoring of cement response Temperature transient testing High-rate injection with limited PVT data Full-scale heat transfer analysis Shut-in and startup Injection into depleted reservoirs Effect of impurities on injection

ENABLED R&D (FLOWLOOP)

Fluid mechanics and flow visualization Gas/SC transition & phase behavior Subsurface CO2 safety valve testing Equations of state; impurities testing Reservoir core testing (mineralization, accelerated time experiments, injectivity) Water and hydrate testing Flow assurance Sensing and automation Long-term exposure of fiber to CO2 Pipeline materials and drag reduction Testing old pipeline materials Chemical treatments Depressurization of pipeline (leaks, dry ice) Clogging of pipeline; fluid hammer, metering

Project Success Metrics

Phase 0a:

- □ Feasible technology option for initial deployment selected, including project plan for subsequent development phases and testing commerciality of carbon removal credit offtake with customers
- Initial deployment site has been selected and a CO2 transport and storage strategy available to meet potential deployment plans
- DAC hub concept is identified that incorporates technology maturation plans of multiple potential technologies and available CO2 transportation and storage
- Credible LCA framework is developed to test net carbon removal of initial deployment and inform the DAC hub concept
- **Community benefits plan** draft completed.

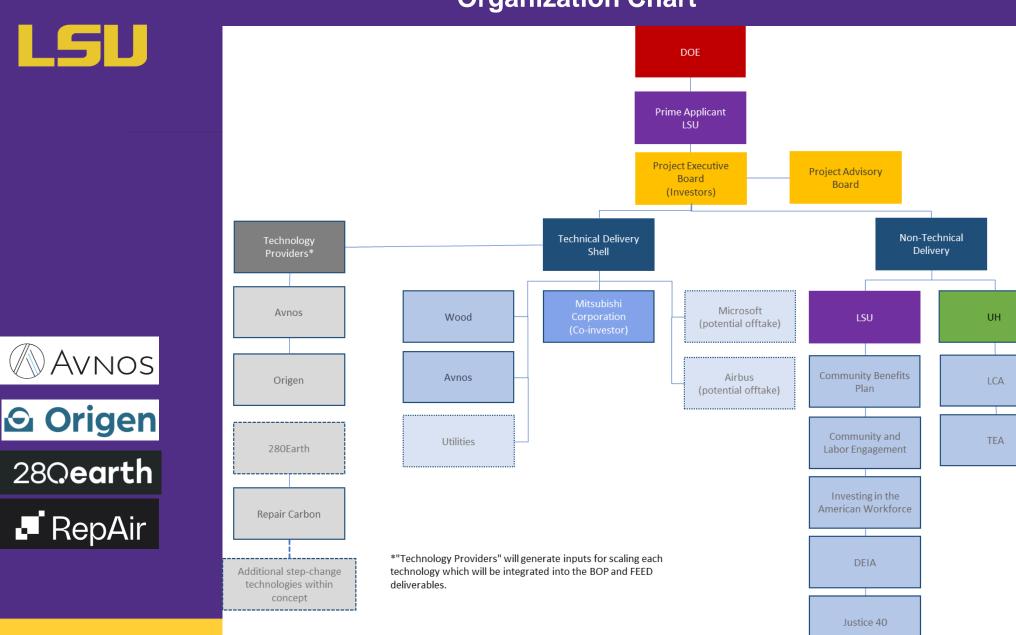
Phase 0b:

- Pre-Front End Engineering Design and Balance Of Plant completed to assess potential for further development of initial DAC deployment. If a commercially viable opportunity is identified:
 - Commercial business model defined with technology developer(s)
 - Customer interest for carbon removal credit purchases is secured
- DAC Technology is sufficiently de-risked to proceed with commercial deployment and continued technology maturation plan is agreed to support DAC hub concept
- **Preliminary LCA** framework has been completed on the proposed initial deployment
- **Updated community benefits plan** draft, including estimated economic and tax impacts.

LSU

Technology Background

	Company	Technology	Tech Strength	Development Status
Tranche 1: priority technologies	Avnos	HDAC Solid Sorbent × Moisture Swing	 Hybrid DAC capturing water from atmosphere 	 30tpa demo operating in California 300tpa demo module in construction and planned operation in 2024 3,000tpa commercial scale operation planned 2026
	Confidential	Confidential	Confidential	Confidential
	lo Origen	Passive Carbonation Solid Sorbent × Temperature Swing (High)	 Low-cost limestone sorbent Fuel Flexible (nat gas, RNG, H2) Low electricity demand 	 1,000tpa fully integrated demo operational in 2024Q4 in North Dakota
	A	Electrical Swing Absorption		
Tranche 2	в	Membrane	Additional technologies in evaluation: seeking	
	C	ТВС	lower energy consumption, lower water use, and modular design	
	D	твс		


Summary of Community Benefits

LSU is currently developing the LSU Model for Community Benefits Planning. The model has four components:

- 1. Structured Listening
- 2. Community Mapping
- 3. Local Economic & Tax Implications
- 4. Communication back to Community

Organization Chart

LSU

Summary Slide

- a. Pelican DAC is currently in **feasibility study stage**.
- b. Through this process, we hope to assess the <u>technical and economic</u> <u>viability</u> of multiple technologies.
 - TEA/LCA will be lead by the University of Houston.
- c. Results will inform whether this project moves forward to design and eventually implementation.
- d. Results will also assist Shell in <u>better understanding community</u> <u>perspectives</u> of a potential project that can be considered in future stages.

Project Milestone Summary – Phase 0a

Deliverables Phase 0a								
Task/ Subtask Number	Deliverable Title	FOA Requirement	Verification Method	Success Criteria	Planned Completion Date			
1.1	Project Management Plan for Phase 0a	Required 30-days after project award	PMP Submission	PMP reviewed and accepted by DOE.	6/30/2024			
1.4	Technology Maturation Plan for Phase 0a	Initial TMP(s) due 45- days prior to Phase Oa completion	TMP Submission	TMP reviewed and accepted by DOE.	1/14/2025			
1.5	Community Benefits Plan Development Proposal	Due 45 day prior to Phase 0a completion	CBP Submission	CBP reviewed and accepted by DOE.	1/14/2025			
2	DAC Hub Description	Due date not detailed	Quarterly Report	Quarterly report reviewed by DOE.	1/14/2025			
3.1	DAC Technology Selection Report	Due date not detailed	Quarterly Report		1/14/2025			
3.2	Conceptual Design for the Initial DAC Hub Capacity Report	Due date not detailed	Quarterly Report		1/14/2025			
4	DAC Hub Data Tables	Due date not detailed	Quarterly Report	Information outlined in Appendix N provided.	1/14/2025			
5.1 & 5.2	Safety, Security, and Regulatory Requirements Summary for Phase Oa	Due date not detailed	Quarterly Report		1/14/2025			
6	Preliminary LCA for Phase 0a	Due 45 day prior to Phase 0a completion	Preliminary LCA submitted to DOE.	Information outlined in Appendix H provided.	1/14/2025			
N/A	Continuation Application	Due 45 day prior to Phase 0a completion			1/14/2025			

ranche 2

LSU