Illinois Basin Regional Direct Air Capture (DAC) Hub

Project Number: DE-FE0032375

Kevin C. OBrien, PhD and Chinmoy Baroi, PhD

University of Illinois Urbana-Champaign

Prairie Research Institute

Net-Zero Center of Excellence

2024 FECM/NETL Carbon Management Research Project Review Meeting

August 5 – 9, 2024

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

Total Funding: \$3,909,166 \$970.638 DOE: \$2,938,528 Cost Share: \$970,638 \$2.938.528 Work Period 1: Jul 1, 2024 – Mar 31, 2025 Work Period 2: Apr 1, 2025 – Jun 30, 2026 Federal Cost Share **Project Participants: C**CarbonCapture[®] Heirloom Prairie Research Institute enerav sade (\mathbf{F}) OZINGA

arth Energ

Project Objectives

- Plan and optimize the design of a DAC Hub that utilizes one of the best geological storage regions in the world – the Illinois Basin.
- Hub has simulated cumulative capacity to store nearly 1 Gigatonne of CO₂.
- 1 Megatonne CO_2 is small fraction of the total storage potential of the region.
- Hub will be designed for an initial capacity of 200 KTA (year 1 of operation) with the ability to rapidly expand above and beyond 1 MTA.
- DAC technology providers will be Carbon Capture Inc. (100 KTA) and Heirloom (100 KTA).

Carbon Capture Inc (CCI) DAC Technology

CCI advanced DAC technology adsorbs CO2 from ambient air using structured solid sorbents heated with low-temperature steam and cooled under vacuum.

Technology highlights:

- Centered around structured sorbents (TRL 8), reduces risk and accelerates deployment of commercial projects
- Modular design accelerates deployment timelines while fostering continuous improvements in design and cost efficiencies at scale
- Open Systems Architecture allows for the upgradability of existing sorbents and hardware, ensuring ongoing enhancements in performance throughout its lifespan.

CCI Deployment Progress

bonCapture™

CCI Technology Demonstration

CCI Technology Demonstration

On June 21, CCI debuted its Leo Series DAC Modules in front of 150 people at an unveiling event in Long Beach, CA.

Key features of CarbonCapture's Leo Series

- First to use structured sorbents
- First designed for mass manufacturing
- Each module is equipped with 12 DAC reactors
- Nominal capacity of 500 tons/year
- Generates a concentrated stream of CO2 at 95+% purity
- Each module is roughly the size of a shipping container

At the event, **Saeb Besarati**, Chief Technology Officer, and team members conducted a live cycle of Leo in what audience members touted as the most transparent and comprehensive demonstration they've seen in the DAC 7 industry.

Watch the demonstration

CCI Leo Series Module

What stakeholders are saying

"What CarbonCapture has accomplished is a direct air capture system designed for mass production. That's a critical milestone for any technology. It's especially exciting to see it in direct air capture."

Brad Crabtree Assistant Secretary, U.S. Department of Energy

"The technology that they [CarbonCapture] have delivered today confirms that we can, when we pull together, invent and simplify incredibly powerful technologies that should give us all enormous hope in the fight against climate change."

Nick Ellis Principal, Amazon Climate Pledge Fund

"I've been a DAC enthusiast/nerd for about 20 years and in the field for 6 and this is the first real, living breathing DAC system I've ever stood next to. I had goosebumps walking next to the unit."

Chris Neidl

Co-founder of The OpenAir Collective and Board Member of the Direct Air Capture Coalition

Heirloom DAC Technology

Use limestone to pull CO₂ from the atmosphere at low-cost

Heirloom Looping Process

Heirloom DAC Technology Roadmap

From 1 kilogram to one tonne of CO₂ in 2 years

Heirloom's Technology Demonstration

Nov 2023: America's First Commercial DAC Facility (~1,000 tonnes) July 2023: Heirloom announces two DAC facilities in Louisiana (~320,000 tonnes)

The New York Times

In a U.S. First, a Commercial Plant Starts Pulling Carbon From the Air The technique is expensive but it could help fight climate change.

The technique is expensive but it could help hght climate change. Backers hope fast growth can bring down costs.

Technology Background (CO₂ utilization)

OZINGA[°]

CarbonCure's CO₂ Dosing Tank and Utilization System

CO₂ incorporated into cement

Technical Approach

IL Basin DAC Hub: A master planned community

- Methodology that could be applied to other hubs
- Identify proximity to existing storage networks
- Identify current point source and DAC projects
- Identify locations of renewable energy close to DAC units and substations
- Availability of water
- Minimize CO₂ transport requirements
- Identify EJ communities and explore impact on communities

14

Technical Approach

IL Basin DAC Hub: Planning Tool

- Possible example requirements:
 - Identify proximity to existing storage networks
 - Identify current point source and DAC projects
 - Identify locations of renewable energy close to DAC units and substations
 - Availability of water
 - Minimize CO₂ transport requirements

Project Scope

Milestone Title & Description	Planned Completion Date		
Project Management Plan	30 days after award		
Business Plan	90 days prior to end		
Financial Plan	90 days prior to end		
Initial Technology Maturation	45 days before Phase		
Plan(s) (TMP)	0a completion		
Final TMD	90 days within		
	project end		
CBP Development Proposal	45 days before Phase		
CBF Development Froposal	0a completion		
Full CBP	90 days prior to end		
Proliminary I CA	45 days before Phase		
	0a completion		
DAC Hub Data Tables	Due at project		
DAC Hub Data Tables	completion		
Integrated DAC System pre-	00 days prior to and		
<u>FEED</u> Study	50 days prior to end		
DAC Hub BOP Concept Design	90 days prior to end		
Updated LCA	90 days prior to end		
Storage Field Development	90 days prior to end		
Plan			
EH&S Risk Analysis	90 days prior to end		
Integrated Project Schedule	90 days prior to end		

Project Risk Matrix

	Risk Rating : L,M,H		,M,H	
Perceived Risk	Probability	Impact	Overall	Mitigation and Response Strategy
Financial				
Cost share for project not obtained or	L	н	L	•Cost share commitment letters obtained.
insufficient				 All entities providing cost share are financially sound.
Capital costs of common infrastructure (e.g.,	М	н	М	•Common infrastructure will leverage synergies with other projects. i.e., wells
storage wells, pipelines, transmission lines)				and pipeline will be developed with wide capacity to enable ammortization of
excessive for relatively small scale DAC				common infrastructure with point-sources to achieve economies of scale and
projects initially.				reduce overall costs per tCO2 removed.
DAC is not immediately financially attractive	М	Н	М	 Business case analysis will explore future projections and highlighted actions
in the USA				required to make this approach attractive in the USA; government support
				through the Infrastructure Bill and increased corporate interest are already
				mitigating these risks.
Cost/Schedule				
Project costs and/or schedule overruns	L	н	L	 Team has previous experience conducting DOE projects on budget and on
				time.
Tasks require significantly more time than	L	Н	М	 Preliminary results from each entity (DAC / CO2 utilization providers and
expected				engineering firms) provide good basis and understanding.
				 Prior scale-up performed by each entity provide a good basis of understanding.
Technical / Scope				
Challenges in identifying feasible CO2 storage	L	н	м	 Storage developer included in Hub team, with several Class VI wells applications
				in process. Ample capacity in IL Basin, with well understood geology and several
				CarbonSAFE projects.
Challenges in securing sufficient land for	L	н	М	 Availability of land across IL, with near access to storage, pipelines and/or
DAC and supporting renewable energy				utilization. A site selection tool with layers for land use, location of storage,
infrastructure				location of power lines, environmental, water and social considerations will
				narrow location to most suitable areas.
				•A renewable energy developer is part of the DAC Hub team, and has secured
				land for solar PV development. Supply of energy to the DAC Hub can be through
				a physical transmission line (when co-located) or through virtual Power Purchase
				Agreement.
Insufficient water supply	L	М	L	Preliminary water requirements have been estimated by DAC providers and are
				deemed to be low.
				•A site selection tool includes considerations for water availability, with multiple
				of sources in area.
Difficulties in scaling up to meet 1 million TPA	L	Н	М	Anchor technologies are of modular design. Scaleup will be based on mass
				production of modules at controlled manufacturing facility. This enables scaling
				CO2 removal capacity with low risks to performance.

Project Risk Matrix

Management, Planning, and Oversight				
Availability of key personnel for project	L	М	L	 Commitment received from partner organizations.
Unrealistic planning base/assumptions in	L	М	M	 Clear and carefully planned timeline created in collaboration with designers
project schedule may result in delays of				and engineers.
project implementation				 Scenario-based planning, using conservative assumptions and adequate
				contingency time for activities on the critical path of the project.
				 Bottom-up planning of individual activities.
				 Integrated, holistic project management set up.
				 Adequate allocation of experienced/qualified personnel to project
Deficient project management may recult in				management.
in officiencies and delaye	L	М	M	•Detailed milestone planning.
Inefficiencies and delays			 Structured meeting, monitoring, and reporting structure to ensure real-time 	
				transparency.
				 Defined decision-making structures and processes.
EH&S				
Project may create longterm risks from		NA	NA	•Planning efforts will consider logistics for safe handling of sorbents, reduction /
effluent or sorbents handling	L	IVI	IVI	treatment of any effluents, and minimization of EH&S risks to communities.
External Factor				
Negative Stakeholder response to proposed	L	М	L	• Discussions with officials from three states show support for the project.
capture system/study				•Community benefits plan will include stakeholder engagement activities and
				measures to ensure that benefits from the project will reach the community.
Issues related to COVID-19 delay execution	L	М	L	Team has worked virtually for months. Communication process currently in
				place that uses remote work tools, e.g. Microsoft Teams.

Summary of Community Benefits

- Southern region
 heavily impacted by
 coal mining, coal based power plant
 emissions.
- Northern region impacted by industrial pollution.

Figure. Disadvantaged communities (dark red) in Hub

Visage Energy Backgrounder

IL Basin DAC Hub CBP/SCI Overview

Justice40 Analysis 🛛 🛞

Justice40 Implementation:

 Develop strategies, methods, and milestones to maximize benefits and minimize negative impacts in IL Basin region.

Impact Mitigation Plan:

 Address air and water pollution with accountability, feedback, and transparency mechanisms involving IL Basin disadvantaged communities.

Community Participation:

• Ensure access to and participation in collecting project data for affected communities.

Community Engagemen

Engagement

Engagement Assessment:

- Determine desired community benefits, conduct research and resource evaluation (including external partners), and start developing a timeline.
 Communication Channels:
- Implement a mix of bidirectional communication techniques (e.g., focus groups, small discussions, educational workshops,& surveys) and define methods to engage.

Engagement Plan:

 Provide short and longterm metrics for effective IL Basin community engagement.

Investing in American Workforce

Workforce Demand and Hiring:

 Analyze future labor needs, identify potential hiring challenges (skills gaps, competition), and highlight growth opportunities.

Creation and Retention of Jobs:

 Define quality jobs, implement workforce development programs, uphold worker rights, and establish clear strategies, milestones, timelines, and resource allocation.

Outreach and Engagement:

 Develop strategies to attract underrepresented groups and ensure local awareness of training/job opportunities through community partnerships and targeted marketing.

DEIA

ŝ

DEIA Goals and Outcomes:

 Refine project specific Diversity, Equity, Inclusion, and Accessibility (DEIA) goals.

DEIA Partnerships:

 Identify partnerships with Minority-Serving Institutions (MSIs) or local DEIA organizations.

Implementation Strategies:

 Create strategies to achieve DEIA outcomes, including defining roles and responsibilities, required resources, accountability measures, and timelines.

Summary

- Project leverages Illinois Basin's enormous CO₂ storage capacity to develop a DAC Hub.
- DAC locations will be selected based on the nearby storage locations, energy and water availability, disadvantaged communities, and opportunity zones.
- Hub activities will support numerous businesses in developing technologies and partnerships, while benefitting economically depressed populations in the region.

Acknowledgement

Name	Organization
Isaac Andy Aurelio	National Energy Technology Laboratory (NETL)
Praveen Kumar, Mike DeYoung, Beth Meschewski, Jong Sung Lee, David Bock, Kendall Taft, Roland Okwen	University of Illinois Urbana-Champaign (UIUC)
Patricia Loria, Meghan Kenny, Matt Bright	CarbonCapture Inc.
Candice Chow-Gamboa, Max Scholten, Chakriya Srey	Heirloom Inc.
Michelle Kang	Earthrise Energy
Will Johnson, Daryl-Lynn Roberts	Visage Energy
Ryan Cialdella	Ozinga
Kevin Cail, Jamie Rogers	CarbonCure
Steve Kelly	One Earth

Net-Zero Center of Excellence - Prairie Research Institute • University of Illinois Urbana-Champaign