Amine Degradation Experiments on a Polymer Supported Molecular Amine DAC Sorbent

2024 FECM / NETL Carbon Management Research Project Review Meeting

Jan Steckel, NETL

Amine Degradation in Porous Sorbents

- Amine degradation: • breakdown of sorbent performance
- The cost of DAC increases as • sorbent lifetime decreases.
- Amine degradation leads to •
 - The need for sorbent contactor replacement or recycling
 - Possible release of harmful contaminants (organic nitrogen compounds and/or ammonia)

Racicot et al. Volatile Products of the Autoxidation of Poly(Ethylenimine) in CO₂ Sorbents. J. Phys. Chem. C 2022, 126 (20), 8807–8816. https://doi.org/10.1021/gcs.jpc

et al. Optimal Design and Operation of Solid Sorbent Direct Air Capture Processes at Varying Ambient Conditions. Ind. Eng. Chem. Res. 2022, 61 (34), 12649–12667.

Published Works Focus on PEI

Mechanism of Oxidative Degradation

- **Polyethylenimine (PEI)** is a commonly used amine for DAC sorbents
- Deactivation of the sorbent tracked via relative loss in CO₂ adsorption
- Accelerated oxidative deactivation was evaluated with dry and humid aerobic (21% O₂) atmosphere at 120 °C
- Dry oxidation exhibited a sigmoidal profile with an initial induction period of ~2h
 - Indicative of formation of carbon-centered radicals.
 - Subsequent rapid oxidative degradation due to radical reaction.

ΔΤΙΟΝΔΙ

3

Carneiro, J. S. A.; Innocenti, G.; Moon, H. J.; Guta, Y.; Proaño, L.; Sievers, C.; Sakwa-Novak, M. A.; Ping, E. W.; Jones, C. W. Insights into the Oxidative Degradation Mechanism of Solid Amine Sorbents for CO 2 Capture from Air: Roles of Atmospheric Water. Angewandte Chemie 2023, 135 (24), e202302887. <u>https://doi.org/10.1002/ange.202302887</u>.

PIM-1-AO as an Anchor for Amines

Amines considered:

- Diethylenetriamine (DETA)
- Tris(2 aminoethyl)amine (TAEA)
- Tetraethylenepentamine (TEPA)
- Tris(2 aminopropyl)amine (TAPA)

PIM-1-AO TAEA - NETL-Developed Polymer Sorbent for DAC

- Based on an amidoximefunctionalized version of PIM-1 polymer (high surface area)
- PIM-1-AO is soluble in several common solvents
- Fibers or other form factors are produced from the material directly; no additives needed
- The sorbent lifetime of this material has not been investigated
- Study the mechanism of degradation by forcing these materials to degrade – subject them to harsh conditions

CO₂ Uptake in Flowing Gas

 CO_2 uptake in PF-15-TAEA measured in flowing gas at a total pressure of 100 mbar, 25°C. The switch from pure N₂ to 10%CO₂/90%N₂ occurs at 2 min.

Adsorption / desorption cycles in flowing gas at a total pressure of 1bar. Conditions: (1) pure N_2 , 25°C; (2) 10%CO₂/90%N₂; (3) temperature ramp in pure N_2 at 3°C/min to 70-75°C (black) or 75-80°C (red).

Sekizkardes, A. K.; Kusuma, V. A.; Culp, J. T.; Muldoon, P.; Hoffman, J.; Steckel, J. A.; Hopkinson, D. Single Polymer Sorbent Fibers for High Performance and Rapid Direct Air Capture. J. Mater. Chem. A 2023, 10.1039.D2TA09270K. https://doi.org/10.1039/D2TA09270K.

Breakthrough Analysis: Porous Wet-Spun Fibers

Wet Spun Fibers: scaled up from ~1g batch to ~20 g batch

diameter of fibers: 1 mm

Hopkinson D., Sekizkardes, A. K., Hoffman J., Yi S., Kusuma V. US Patent App. 17/891,153

Electrospun Flat Sheets (30 x 5 cm)

diameter of fibers: 2 micron

Hand Cast Porous Flat Sheets

Uptake ~1.3 mmol/g under humid DAC conditions with 70°C regeneration

Uptake ~1.1 mmol/g under humid DAC conditions with 50°C regeneration

~10 m long flat sheet (large-scale knife casting instrument)

*Uptake ~1.7 mmol/g under humid DAC conditions with 70°C regeneration (prelim)

DAC Center Aging

DAC Center Allows for Controlled Accelerated Aging Conditions

- Focused on material properties and longevity
- Multi-gas measurements with amounts of materials greater than typical lab scale
- Able to accommodate all common materials (powder, granular, fiber, structured)
- Automated for extended, multi-cycle testing For the accelerated aging experiments, we used the lab scale unit to hold the material for 7 days at specific harsh conditions.

Uptake Loss – DAC Center Aging - Dry

- Breakthrough Analysis (BTA) Provides a Measure of CO₂ Uptake
- Pristine (un-aged) sample:
 - CO₂ capacity: 1.40 mmol/g
- Aged under N_2 420 ppm CO_2 Dry 75°C
 - After 4 days: CO₂ capacity: 1.36 mmol/g
 - After 7 days: CO₂ capacity: **1.37** mmol/g
- Aged under N₂ 420 ppm CO₂ 20% O₂ Dry 75°C
 - After 3.5 days: CO₂ capacity: 0.70 mmol/g
 - After 7 days: CO₂ capacity: **0.43** mmol/g

Diminished CO₂ uptake capacity after aging with O₂

Uptake Loss – DAC Center Aging - Humid

- Breakthrough Analysis (BTA) Provides a Measure of CO₂ Uptake
- Pristine (un-aged) sample:
 - CO₂ capacity: **1.40** mmol/g
- Aged under house air, (420 ppm CO₂) 40-50% RH, 75°C
 - After 3.5 days: CO₂ capacity: 0.39 mmol/g
 - After 7 days: CO₂ capacity: **0.14** mmol/g

Presence of humidity increases the rate of oxidative degradation

NMR Results for Aging

- Solid State NMR Analysis (University of Pittsburgh)
- TAEA Tris(2-aminoethyl)amine
- Aging in oven, 70°C, RH ambient
- Peak around 160 ppm increasing, associated with degradation
- Peak near 39-40 ppm corresponds to the C near the NH₂ group. Decreasing with aging.
- Natural abundance of ¹³C is very low, leading to a low signal to noise ratio. We are investigating synthesizing the ¹³C or ¹⁵N versions of the amines.

NATIONAL

Spectroscopic Results for Aging

Fourier Transform Infrared (FT-IR) Spectroscopy Provides Information About Chemical Abora Changes

- N-H stretch for amidoxime amine
 - Broad peak near 3450 cm⁻¹
 - Does not disappear with aging
- N-H stretch for alkyl amine
 - Peaks at 3283, 3350 cm⁻¹
 - Disappear with aging
- Aging leads to *loss of the alkyl amine group* but not the amidoxime amine group

17

In-Situ Fourier Transform Infrared (FT-IR) Spectroscopy of Sorbent Material Exposed to Flowing Gas Mixtures

In-Situ Spectroscopic Results for Aging

- In Situ Experiments carried out for ~8 days
 - 20°C, dry air
 - 70°C, dry air
 - 70°C, 50% RH air
- Significant intensity increase of 1650 cm-1 peak associated with C=O and C=N bonds.

FT-IR in-situ 70°C, 50% RH air (400 ppm CO_2 , 20% O_2 , balance N_2).

Computational Prediction of FT-IR Spectra

Computational Prediction of FT-IR Spectra

Gas Phase Predictions Useful for Understanding Spectral Evidence of Amine + CO₂ Reaction, Stabilization Provided by Water

Computational Prediction of FT-IR Spectra

Condensed Phase Simulations: Pristine PIM1-AO + 10 TAEA + 10 CO₂

Conclusions

- Oxidative degradation observed after heat ~70 $^\circ\mathrm{C}$ in the presence of O_2 as evidenced by:
 - Capacity loss
 - NMR
 - FT-IR
- Amines on TAEA degraded while amidoxime amines not degraded.
- Gas phase and condensed phase computed spectra for pristine material aid in peak assignments.

Future Plans

- Computational spectra for postulated reaction products.
- Measure the capacity loss for PIM-1-AO TAEA at 45°C.
- Planned experiments with a transfer reaction time of flight mass spectrometry (PTR-TOF-MS) in the DAC Center to identify reaction products.

Acknowledgements

- Ali Sekizkardes
- Patrick Muldoon
- Khaled Ba Amran
- Krishnan Damodaran
- Dan Sorescu
- David Luebke
- Viktoria Pretzman
- Victor Kusuma

ATIONAL