Amine Degradation Experiments on a Polymer Supported Molecular Amine DAC Sorbent

2024 FECM / NETL Carbon Management Research Project Review Meeting

Jan Steckel, NETL

Amine Degradation in Porous Sorbents

- Amine degradation: breakdown of sorbent performance
- The cost of DAC increases as sorbent lifetime decreases.
- Amine degradation leads to
	- The need for sorbent contactor replacement or recycling
	- Possible release of harmful contaminants (organic nitrogen compounds and/or ammonia)

Racicot et al. Volatile Products of the Autoxidation of Poly(Ethylenimine) in CO₂ Sorbents. J. Phys. Chem. C 2022, 126 (20), 8807–8816. https://doi. Optimal Design and Operation of Solid Sorbent Direct Air Capture Processes at Varying Ambient Conditions. Ind. Eng. Chem. Res. 2022, 61 (34), 12649–12667. [https://doi.org/10.1021/acs.iecr.2c00681.](https://doi.org/10.1021/acs.iecr.2c00681)

Published Works Focus on PEI

Mechanism of Oxidative Degradation

- *Polyethylenimine (PEI)* is a commonly used amine for DAC sorbents
- Deactivation of the sorbent tracked via relative loss in $CO₂$ adsorption
- Accelerated oxidative deactivation was evaluated with dry and humid aerobic $(21\% \text{ O}_2)$ atmosphere at 120 °C
- Dry oxidation exhibited a sigmoidal profile with an initial induction period of ~2h
	- *Indicative of formation of carbon-centered radicals.*
	- *Subsequent rapid oxidative degradation due to radical reaction.*

HNOLOGY

Carneiro, J. S. A.; Innocenti, G.; Moon, H. J.; Guta, Y.; Proaño, L.; Sievers, C.; Sakwa-Novak, M. A.; Ping, E. W.; Jones, C. W. Insights into the Oxidative Degradation Mechanism of Solid 3 Amine Sorbents for CO 2 Capture from Air: Roles of Atmospheric Water. *Angewandte Chemie* **2023**, *135* (24), e202302887. <https://doi.org/10.1002/ange.202302887>.

PIM-1-AO as an Anchor for Amines

Amines considered:

- Diethylenetriamine (DETA)
- Tris(2 aminoethyl)amine (TAEA)
- Tetraethylenepentamine (TEPA)
- Tris(2 aminopropyl)amine (TAPA)

PIM-1-AO TAEA - NETL-Developed Polymer Sorbent for DAC

- Based on an amidoximefunctionalized version of PIM-1 polymer (*high surface area*)
- PIM-1-AO is soluble in several common solvents
- Fibers or other form factors are produced from the material directly; no additives needed
- *The sorbent lifetime of this material has not been investigated*
- *Study the mechanism of degradation by forcing these materials to degrade – subject them to harsh conditions*

CO₂ Uptake in Flowing Gas

IEC HNOLOGY $-cycle$ 1 $-\text{cycle}$ 2 \equiv cycle 3 $-cycle 4$ $-cycle₅$ $-cycle 6$ $-cycle$ 7 $-cycle 8$ $-cycle₉$ $-$ cycle 10 $-cycle$ 11 $-cycle$ 12 \equiv cycle 13 \equiv cycle 14 \equiv cycle 15

40

Time (min)

CO₂ uptake in PF-15-TAEA measured in flowing gas at a total pressure of 100 mbar, 25°C. The switch from pure $N₂$ to 10%CO₂/90%N₂ occurs at 2 min.

Adsorption / desorption cycles in flowing gas at a total pressure of 1bar. Conditions: (1) pure N_2 , 25°C; (2) $10\%CO_{2}/90\%N_{2}$; (3) temperature ramp in pure N₂ at 3°C/min to 70-75°C (black) or 75-80°C (red).

20

Sekizkardes, A. K.; Kusuma, V. A.; Culp, J. T.; Muldoon, P.; Hoffman, J.; Steckel, J. A.; Hopkinson, D. Single Polymer Sorbent Fibers for High Performance and Rapid Direct Air Capture. *J. Mater. Chem. A* **2023**, 10.1039.D2TA09270K. [https://doi.org/10.1039/D2TA09270K.](https://doi.org/10.1039/D2TA09270K)

6

 $CO₂$ Adsorbed (wt%)
 \sim \sim

1

 Ω

 $\mathbf 0$

IONAL

60

Breakthrough Analysis: Porous Wet-Spun Fibers

1200

Time (min.)

DAC Conditions

Wet Spun Fibers: scaled up from ~1g batch to ~20 g batch

diameter of fibers: 1 mm

8 Hopkinson D., Sekizkardes, A. K, Hoffman J., Yi S., Kusuma V. US Patent App. 17/891,153

Electrospun Flat Sheets (30 x 5 cm)

diameter of fibers: 2 micron

Hand Cast Porous Flat Sheets

Uptake ~1.3 mmol/g under humid DAC conditions with 70°C regeneration

Uptake ~1.1 mmol/g under humid DAC conditions with 50°C regeneration

~10 m long flat sheet (large-scale knife casting instrument)

***Uptake ~1.7 mmol/g under humid DAC conditions with 70°C regeneration (prelim)**

DAC Center Aging

DAC Center Allows for Controlled Accelerated Aging Conditions

- Focused on material properties and longevity
- Multi-gas measurements with amounts of materials greater than typical lab scale
- Able to accommodate all common materials (powder, granular, fiber, structured)
- Automated for extended, multi-cycle testing For the accelerated aging experiments, we used the lab scale unit to hold the material for 7 days at specific harsh conditions.

Uptake Loss – DAC Center Aging - Dry

- **Breakthrough Analysis (BTA) Provides a Measure of CO₂ Uptake**
- Pristine (un-aged) sample:
	- $CO₂$ capacity: **1.40** mmol/g
- Aged under N_2 420 ppm CO_2 Dry 75°C
	- After 4 days: $CO₂$ capacity: **1.36** mmol/g
	- After 7 days: $CO₂$ capacity: **1.37** mmol/g
- Aged under N_2 420 ppm CO_2 20% O_2 Dry 75ºC
	- After 3.5 days: $CO₂$ capacity: **0.70** mmol/g
	- After 7 days: $CO₂$ capacity: **0.43** mmol/g

Diminished CO₂ uptake capacity after aging with O₂

Uptake Loss – DAC Center Aging - Humid

- **Breakthrough Analysis (BTA) Provides a Measure of CO₂ Uptake**
- Pristine (un-aged) sample:
	- \cdot CO₂ capacity: **1.40** mmol/g
- Aged under house air, $(420$ ppm $CO₂)$ 40-50% RH, 75ºC
	- After 3.5 days: $CO₂$ capacity: **0.39** mmol/g
	- After 7 days: CO₂ capacity: **0.14** mmol/g

Presence of humidity increases the rate of oxidative degradation

NMR Results for Aging

- TAEA Tris(2 -aminoethyl)amine
- Aging in oven, 70˚C, RH ambient
- Peak around 160 ppm increasing, associated with degradation
- Peak near 39 -40 ppm corresponds to the C near the NH ² group. Decreasing with aging.
- Natural abundance of ${}^{13}C$ is very low, leading to a low signal to noise ratio. We are investigating synthesizing the ¹³C or ¹⁵N versions of the amines.

Spectroscopic Results for Aging

Fourier Transform Infrared (FT-IR) Spectroscopy Provides Information About Chemic Changes

- N-H stretch for amidoxime amine
	- Broad peak near 3450 cm⁻¹
	- Does not disappear with aging
- N-H stretch for alkyl amine
	- Peaks at 3283, 3350 cm⁻¹
	- Disappear with aging
- Aging leads to *loss of the alkyl amine group* but not the amidoxime amine group

17

In-Situ Fourier Transform Infrared (FT-IR) Spectroscopy of Sorbent Material Exposed to Flowing Gas Mixtures

- In Situ Experiments carried out for ~8 days
	- 20°C, dry air
	- 70°C, dry air
	- 70˚C, 50% RH air
- Significant intensity increase of 1650 cm-1 peak associated with C=O and C=N bonds.

FT-IR in-situ 70°C, 50% RH air (400 ppm CO₂, 20% O₂, balance N_2).

Wavenumber (cm⁻¹)

Computational Prediction of FT-IR Spectra

Gas Phase vs Condensed Phase

Computational Prediction of FT-IR Spectra

Gas Phase Predictions Useful for Understanding Spectral Evidence of Amine + CO2 Reaction, Stabilization Provided by Water

Computational Prediction of FT-IR Spectra

Condensed Phase Simulations: Pristine PIM1-AO + 10 TAEA + 10 CO₂

Conclusions

- Oxidative degradation observed after heat ~70°C in the presence of $O₂$ as evidenced by:
	- Capacity loss
	- NMR
	- FT-IR
- Amines on TAEA degraded while amidoxime amines not degraded.
- Gas phase and condensed phase computed spectra for pristine material aid in peak assignments.

Future Plans

- Computational spectra for postulated reaction products.
- Measure the capacity loss for PIM-1-AO TAEA at 45˚C.
- Planned experiments with a transfer reaction time of flight mass spectrometry (PTR-TOF-MS) in the DAC Center to identify reaction products.

Acknowledgements

- Ali Sekizkardes
- Patrick Muldoon
- Khaled Ba Amran
- Krishnan Damodaran
- Dan Sorescu
- David Luebke
- Viktoria Pretzman
- Victor Kusuma

ATIONAL