A Combined Water and CO₂ Direct Air Capture System DE-FE0031970

Neel Rangnekar, Principal Research Engineer, IWVC Alexander Spiteri, Principal Research Engineer, IWVC

> U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting August 5 – 9, 2024

Project Overview

- DOE FOA 2188 Award
 - A Combined Atmospheric Water Extraction and CO2 Direct Air Capture System
- Initial funding \$3.2M (DOE share \$2.485M, cost share \$672K)
- Project Duration 10/1/2020 03/31/2024
- Project Extension granted until 12/31/2024
 Additional budget of \$300,000 (DOE share \$195K, cost share \$105K)
- Team
 - Awardee: IWVC
 - Subawardees: PNNL, Barr Engineering
 - Additional Participants: SoCalGas, Univ. North Texas
- Project Objective build 30 ton-CO₂/year pilot facility; 1000 L/d H₂O capture

BP Task and Subtask Breakdown

- All Budget Periods
 - Subtask 1.1 Project Management
 - Subtask 1.2 Technology Maturation Plan
- Budget Period 1 HDAC Unit Detailed Design
 - Task 2.0 HDAC Unit Detailed Design
 - Process Modeling, Equipment Sizing, System Layout, Detailed Design, Update cost estimate
- Budget Period 2 HDAC Unit Fabrication
 - Task 3.0 HDAC Unit Fabrication
 - Subtask 3.1 DAC/Desiccant Bed Fabrication
 - Subtask 3.2 Water Vapor Vacuum Pump
 - Subtask 3.3 Condenser
 - Subtask 3.4 Balance of Plant Assembly and Testing
 - Subtask 3.5 Host Site Planning and Test Plan Dev.
- Budget Period 3 Field Performance Test, Data Analysis & Reporting
 - Task 4.0 Field Site Setup and Performance Testing
 - Phase 1: Operational performance checks and shakedown testing
 - Phase 2: Short duration parametric testing
 - Phase 3: Long-term testing
 - Task 5.0 Data Analysis and Reporting
 - Task 6.0 Materials and Process Development

Project and Technology Background

Technology Background

Isothermal Water Vapor and CO2 Capture (IWVC)

- HDAC H₂O and CO₂ from ambient air stream in single system
- Two-train System Train 1: adsorption; Train 2: desorption
 - Atmospheric water extraction (AWE)
 - Capture heat from exothermic adsorption; exchange between trains
 - o Vacuum swing regeneration
 - Pressure swing DAC section
 - Both use custom contactor design, maximize heat and mass transfer
- CO₂ Sorbent solid phase MOF
- DAC Heat Source no external heat required
- Water Consumption no water consumption
- Primary Consumable electricity for fans, vacuum pump, compression

BP1: HDAC Unit Detailed Design - completed

Two chamber design integrating both AWE and DAC sections

BP2: HDAC Unit Fabrication - completed

Module and BOP engineering and construction has been completed.

BP3: HDAC Unit Operation - ongoing

Test Results

Initial results

- AWE chamber initially loaded with non-commercial custom designed radiators coated with dessicant MOF
- AWE captures 4.5 liters (56wt%) of water over adsorption cycle at 70% inlet RH
- Uptake amount is very close to laboratory results from PNNL

AWE radiators coated with dessicant MOF

Initial results

Radiators coated with P/TSA MOF

- Custom designed radiators coated with P/TSA MOF were loaded on the DAC side.
- MOF does not desorb CO₂ in significant amounts at pressure generated by liquid ring vacuum pump (25-30 mbar).
- Measurable amounts of CO₂ uptake only after very low pressure (<10 mbar) and elevated temperature desorption.

First results with moisture swing adsorbent (MSA)

Due to limitations of P/TSA sorbent, DAC sorbent was replaced with Avnos-built packed beds containing moisture swing adsorbents (MSA)

- First attempt: ~300 grams CO₂ captured in 30 minute adsorption cycle (1.0 mmol/g working capacity)
- CO₂ uptake amount (green curve) is 6X higher than best result with MOF (yellow curve)

Commercial radiators coated with AWE adsorbent

- AWE radiators replaced with commercial microchannel heat exchangers.
- High uniformity of fins results in uniform sorbent coatings.
- Overall AWE working capacity similar to before but significant improvement in kinetics.

Cyclic performance with new AWE and MSA contactors

Different process conditions were explored, primarily including variations in desorption pressure, temperature and duration.

• Elevated pressure cycle allows for reduction in water production rate with similar CO₂ production rate.

Uniformity of new AWE contactors results in 4X higher water production rates than before.

Automated pilot plant operation

- Automation implemented end of June and cycles optimized in July.
- All cycle parameters (e.g. number of cycles, pressures, temperatures etc.) can be modified.
- July 25: First overnight automated run.
- 30 cycles completed back-to-back (21 hours of total run time).
- Since July 25, pilot plant has been running in automated mode.

Consistent H_2O production rate over 30 cycles

- More water desorbed during initial cycles since AWE is saturated after being exposed to humid air overnight.
- Mass balance closure achieved after ~10 cycles (steady state operation).
- Average water production rate (9 kg/m³/h) is within expected range.

Consistent CO₂ production rate over 30 cycles

Average volumetric CO2 production rate of 0.5 kg/m³/h is within expected range for packed bed contactor

Lessons Learned

- Hybrid Direct Air Capture successfully demonstrated!

- AWE and MSA sorbents have working capacities in expected ranges.
- Improvement of the quality of the AWE contactors and cross-sectional uniformity of the water capture resulted in the improvement of water production rates by a factor 4.
- The initial MOF material (P/T swing) did not yield satisfactory results due to limitations on minimum vacuum pressure achievable.
- MSA materials have been operated successfully and provided performance in the range required for commercial implementation.
- Novel AWE and MSA materials will benefit from further development.

Plans for future testing/development/ commercialization

Project Next Steps:

- Continued long term testing of automated cycles.
- Replace packed beds with structured sorbents.
- Preparation of updated project documents as per project milestone requirements.
- End of project as per 12/31/2024.

15X Scale-up Project:

- Underway with the Office of Naval Research.
- Construction to commence January 2025.

Commercial Scale Projects and Agreements have been secured under the commercial entity:

Acknowledgements

Project Team

Will Kain IWVC

Ben McCool

Alex Spiteri

IWVC

Neel Rangnekar

Michael Raas

Flavio da Cruz SoCalGas

Pete McGrail IWVC consultant & PNNL alumnus

Todd Schaef PNNL

Dan Palo Anne Weaver BARR

DOE team: Andy Aurelio, David Lang, John Hatfield, Amy Ali

Appendix

Revised IWVC HDAC PROJECT TIMELINE - GANTT CHART - February 2024

	FY21 BP1				FY22 BP2				FY23				FY24				FY25			
											BP3									
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
	ON	JFN	AMJ	JAS	OND	JFM	AM J	JAS	OND	JFM	AMJ	JAS	OND	JFM	AM J	JAS	OND	JFM	A M J	JAS
1. Project Management (IWVC)																				
1.1 Project Management																				
1.1 Technology Maturation Plan																				
2. HDAC Unit Detailed Design (Barr)		NA MA																		
3. HDAC Unit Fabrication																				
3.1 DAC and Desiccant Bed Fabrication (PNNL)																				
3.2 Liquid Ring Vacuum Pump (BARR)																				
3.3 Condenser (PNNL/BARR)																				
3.4 Balance of Plant Assembly and Testing (Barr)																				
3.5 Host Site Planning and Test Plan Development																				
no-cost extension period																				
4. Field Site Setup and Performance Testing (IWVC)																				
5. Data Analysis and Reporting (IWVC)																				
6. Project Extension																				
6.1 Development and Procurement of Materials																				
6.2. Construction and Installation of DAC beds																				
6.3. Construction and Installation of AWE beds																				
6.4. Upgrade of Software, Controls and Automation.																				
6.5. Upgrade of Process Equipment																				
6.6. Long-term testing																*				
6.7. Decommissioning																<u>~</u>				

initial project timeline

November 2022 project no-cost time extension to 03/31/2024

today

February 2024 project extensions and SOPO change