

CO2 Direct Air Capture by Ion-Exchange Sorbent and Low-Grade Heat: Advanced Sorbent, Energy, and Performance

a Collaborative Effort of: Advanced Cooling Technologies, Lehigh University, and Jeevan Technology

Robin Pham | July 12, 2024

Envisioned Full-Scale System

PROGRAM DETAILS

Contract #: DE-SC0022940

Start Date:	Aug. 28, 2023
Final Report:	Aug. 27, 2025
End Date:	Aug. 27, 2025
Budget:	\$1,649,927
ACT:	\$889,927
lehiah [.]	\$710,000

Technical Monitor/COR

Erika Coffey Project Manager CO₂ Removal & Conversion Team U.S. DOE-NETL

\$50,000

Personnel

TABA:

Josh Charles (PI), Robin Pham, Elizabeth Seber, Megan Gettle, Arup SenGupta*, Carlos Romero*

Objectives:

Demonstrate and scale a DAC technology based on an **ion-exchange CO₂-selective resin** regenerated using **low-grade heat or electricity**.

Program Goals:

- Develop key components of the DAC system.
- Design and fabricate a sub-scale testbed.
- Demonstrate operation of individual components.
- Refine the Phase I full-scale DAC system model.
- Complete a detailed TEA and LCA.
- Establish relationships with key market players.

BACKGROUND

SYSTEM

CO2 is captured via **fluidized bed**

Heat is delivered **highly efficiently** with **hot liquid water**

Low-grade heat from industrial processes can be repurposed (50°C to 100°C operation)

Liquid-gas sequestration allows for highly pure CO2 recovery without vacuum infrastructures

CO2 can be recovered with electricity via acid-base ion exchange

SYSTEM

CO2 is captured via **fluidized bed**

Heat is delivered **highly efficiently** with **hot liquid water**

Low-grade heat from industrial processes can be repurposed (50°C to 100°C operation)

Liquid-gas sequestration allows for **highly pure CO2 recovery** without vacuum infrastructures

CO2 can be recovered with electricity with acid-base ion exchange

ISO9001 & AS 9100 CERTIFIED | ITAR REGISTERED ACT PROPRIETARY INFORMATION

PILOT SCALE

Operating condition:

- Room temperature ~25°C
- Common humidity ~50% RH

Dimensions:

- Footprint ~3.25 m2
- Height ~2 m

Capacity:

- ~15-20 kg of sorbents
- ~80 mol CO2 at full capture
- ~27 mol CO2 per 2-hour cycle (~5 tonnes per year)

A scale-up effort from lab-scale system

- CO2-clean outlet can be hooked to the AC system

Fluidized Capture Bed

Particulate sorbent
are fluidized
Expandable
modular bed

- Ambient air inlet

Hot-Water Regeneration

- Hot water is pumped through the resin to recover captured CO2 - Low-grade heat
is recovered into a
tank of water
(thermal battery)

Acid-Base Regeneration

Electro-chemical cell

- Acid liquid reacts with bicarbonate to recover CO2 in gas form

Base liquid regenerates
 captured CO2 as
 Bicarbonates HCO3-

- Pure CO2 gas is compressed at the top of the system

Liquid-Gas Separation

- Gas and liquid enter separation chamber

- Liquid leaves the chamber

Hybrid Approach to Sorbent

Common Amine-Based Sorbent

Our Team's Sorbent, DeCarbonHIX : Hydroxide-Coated Amine

ISO9001 & AS 9100 CERTIFIED | ITAR REGISTERED ACT PROPRIETARY INFORMATION

RESULTS and LESSONS LEARNED: 1st Year

Pilot System Fabrication

Completed the Testbed Design

 The 1st year was spent in building up the pilot scale system and testing individual components.

Air-contactor column filled with liquid

Zoomed-in view at the 100micron mesh and supporting grid

Sorbent Life Cycle Testing

Highly Stable through Many Cycles

- Tested through more than 150 cycles with 80 C hot water regeneration
- In terms of Direct Air Capture that means stable projected operation of CO2 capture plant through 3 months of full saturated capturing!

Strengths

- Hydroxide coating protecting the amine
- A stable amine can capture much more
- Mechanically stable sorbent allows for fluidization

Sorbent Life Cycle Testing

CO2 Sorption Capacity from Air (mol/kg)

A Holistic System Model

Economics of Carbon Management

- Cost in Energy
- Cost in Time
- Cost in Space, Size, and Footprint

Capture Phase

Energy Cost

$$W = \Delta P \cdot \Delta V$$

Is a product of Pressure Drop (P) and Total Air Volume moved (V)

With Fluidization:

- Pressure Drop is reduced by 50% to 70%
- Total Air Volume movement is reduced by 60 to 85%
- Compounding to more than 80% of energy saving

Capture Phase

Energy Cost

$$W = \Delta P \cdot \Delta V$$

Is a product of Pressure Drop (P) and Total Air Volume moved (V)

Capture Phase

Energy Cost

$$W = \Delta P \cdot \Delta V$$

Is a product of Pressure Drop (P) and Total Air Volume moved (V)

With Fluidization (in blue):

Pressure Drop is reduced by 50% to 70%

- Total Air Volume movement is reduced by 60 to 85%
- Compounding to more than 80% of energy saving

Energy Cost Linked to Time

$$Q = h A \cdot (T_{\text{regen}} - T_{\text{ambient}}) \cdot t$$

• Is the product of temperature difference $(T_{regen} - T_{ambient})$ and the time required for the process (t)

Energy Cost Linked to Time

$$Q = h A \cdot (T_{\text{regen}} - T_{\text{ambient}}) \cdot t$$

• Is the product of temperature difference $(T_{regen} - T_{ambient})$ and the time required for the process (*t*)

Total Cycle

Time Cost

- The shorter the cycle time is, the more high-kinetics of early-stage fluidization we can exploit.
- Problem: process overheads

Hypothesized model for 6 pilot systems sharing regeneration facility

Gas-Liquid Separation

Sizing Cost

- Gas-liquid separation can be done highly efficiently via gravity.
- However, gravity needs space for the acceleration to take effect, otherwise the gas would recycle into the system.
- A new technology for compact separation: *Bi-Philic Meshes*

Gas-Liquid Separation

SUMMARY and PLANS: 1st Year

Next Step in the Project

- The focus and strength of our Team is a holistic approach to the DAC, focusing on the efficiency of each step and harmonious interplay of each component
- Characterize the operational speed and costs and overheads of the built pilot system
- Update the system model
- Generate the new optimal operational point

• Prepare for scaling up another magnitude !

Ocean-based storage of CO2 (saving energy and overheads on regeneration phase) – Our presentation on Friday, 8:15 AM, Room 408/409/410 ^(C)

THANK YOU