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Project Overview

DOE SBIR Grant: DE

SC0020795 Start Date End Date Award Amount
Phase I 6/29/2020 3/28/2021 $250,000
Phase II 8/23/2021 8/22/2023 $1,600,000

Phase IIA 8/28/2023 2/27/2025 $1,150,000
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Reactive Carbon Capture Platform: Dual Function Materials

Dual function materials (DFMs) are sorbent-catalyst combinations that can capture CO , from a point source or DAC and
directly convert it into a value-added product.

CO, Capture Hydrogenation with Renewable H ,

Higher Temperature
Capture agent Conversion catalyst (using renewable power)

CO,-containing o _
Air Feed Adsorbent Catalyst E> CO,-lean Air H, E>

Al, O3 Support

> CH,

The DFM process is aPower -to-X platform for converting renewable power into
methane that is compatible with the current pipeline infrastructure.
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The DAC-DFM Process for Reactive Capture

Objective: Lowerthe cost of DAC through developmentofadvanced dual-functionalmaterials (DFM)
and production ofrenewable naturalgas (RNG) from CO,

Two Step Process Cycle Ambient

Step1:  Adsorb CO, from air onto DFM — ®) R IS CO,-LEAN AIR
atambient conditions )
Step2: Addrenewable H,and heatto
- (X@m
Axl

regenerate the sorbentto
200-300°C

directly produce methane

Overall Reaction
CO, +4H,=CH, +2H,0

This is a Power -to-Gas technology using atmospheric CO,.

4 SUSTEON



Phase IAchievements: DFM Formulation Ru + Na sorbent

1%Ru, 10%Na,0/ALO; (green) shows the
highest CO, capture capacity (~3 wt.%).
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Thermal gravimetric analysis:

Adsorption @ 25°Con 1%

Ru, 10%sorbent/AlL,O; granules with 375 ppm CO,/air

Additional insight :Ru enhances CO, capture
capacity ofsorbent (solid v. dotted lines).
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Phase IAchievements: DFM Formulation Ru + Na sorbent

Concept Feasibility in Lab -Scale Reactor

1%Ru, 10%Na,0/AL O, granules

CO, Ads/Des & CH, Produced [umol/gpgyl]

—e— CO, Adsorbed
[ | CH, Produced

Additional insight :Ru enhances CO, capture
capacity ofsorbent (solid v. dotted lines).
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Phase II: Electrification via Structured Material Assembly (SMA)

Our SMA integrates the heating layer, sorbent, catalyst,
supportand monolith substrate. Key advantages:

DualFunction v Increases productivity by enabling fast CO,
Material (DFM) adsorption and fastconversion
Layer

Y v Lowers the energy utilization byreducing
Tailored pressure drop during adsorption and energy
Heating Layer losses during methanation

v . .

Cordierite CR:I?\I,:IZS:LiatS between adsorption and
Monolith
Substrate v" Powered by low -carbon electricity for

maximum conversion efficiency

Before washcoating After washcoating
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Phase II. DFM Monolith Showed Long-Term Stability >100 Cycles

CO, capacity returns to 4.5 wt.% after exposed to
extreme climate conditions over 100+ cycles.

CO, adsorbed/desorbed &
CH, produced (umol/g,, .shcoat)
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Phase II: Demonstrated Joule Heated DFM Cycles

< Reliable, cyclic CO,
; conversion is

achieved using the
DFM SMA with

Joule heating layer

Additionalscreening tests showed over

70% conversion of CO, to CH, during
300+ hours ofcontinuous testing

| BCH, OCO, Des

u COZ Ads
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CYCLE
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State of Technology & Objectives of Phase IIA

Phase |

Laboratory Testing

Phase Il

Development
of DFM
washcoated
monolith

Bench Component
Testing

F

Phase IIA

Fully integrated DAC-DFM

DFM with cyghc Technology package unit demonstrated for
direct electric ready for commercial .
. . continuous RNG
heated methanation investment .
production
Integrated Bench Pilot Demonstration

Testing

Demonstration

. H

Plant

300 g CO,/day 0.3 - 1 kg CO,/day 50 kg CO,/day 1t.CO,/day
TRL- 4 TRL- 5 TRL-7 TRL-8/9
I 2020 - 2021 I 2021 -2023 I 2023 —2025 I 2025 & beyond I
v COMPLETED v COMPLETED ONGOING
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State of Technology & Objectives ofPhase IIA

Phase | Phase Il Phase IIA

Development DFM with cyclic

of DFM . : De-risk technology scale up through
h direct electric )
was Coﬁ":d heated methanation long-term bench testing under
monoli

representative conditions

Use bench data to develop high -
level process design for 50 kg/day
pilot system

Bench Component
Testing

Integrated Bench
Testing

Laboratory Testing

I g . Perform TEAand LCA

Develop commercialization plan for

0.5g CQ/day 300 g CO,/day 0.3 -1 kg CO,/day
TRL-2 TRL-4 TRL-5 nextscale developmentand
deployment
I 2020 - 2021 I 2021-2023 I 2023 -2025
v COMPLETED v COMPLETED ONGOING
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Conceptual Process Design
Basis: 50 tons RNGperday

Renewable Power

» CO,lean air

Air: 230,000 tpd
CO,: 140 tpd 41 MW

54 MW

| H,0: 275 tpd
Hydrogen ™ I
feed makeup ydrogen recycie H.: 25
: 25 tpd
25 tpd 200
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Stable DFM Integrated with Improved Resistive Carbon

CO, captured/desorbed
& CH, produced (mmol/gpey)

>90% conversion to CH , achieved using

electrical heating platform (SMA)
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Bench Unit Overview & Key Components

Conditioned Productto
Gas Analysis

Hydrogen

RNG

Compressor

Steam

4 DrM
Reactor

CO,-lean air Water KO.

M'

generator

Inlet Gas Manifold

Gas supply
Mass flow controllers
Valves
Steam generator

|
|
|
|
|
|
|
L|_> Slipstream ofCO,-lean

Air to Gas Analysis

|
I
| o
Product Gas Conditioning
DF :
MReactor : & Analysis
Reactor Vessel I Water knockout
DFM Monolith ' Valves
SCR Heaters I Productgas analysis
Pressure and Temperature :
Transmitters |
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Bench DFM Unit is Fully Commissioned

Reactor HMI displays the current system state, allows
manual operation, and monitoring and intervention during
automated cycling.

DFMReactor  DFMConfig  LICOR  Steam Gen

A, @D Rumning Bench
Q!
1

o=

Bench reactor

. Up to 300 g CQ captured & converted per day

. Includes Joule heating functionality for cyclic temperature swing

. Concept for pre-commercial scale
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Commissioning the Bench Unit with an Unoptimized DFM Brick

Sample specifications: 0.5

5.25” diameter x 2.83” length

E | L °
0.31 wt.% Ru & 15.15 wt.% NaCO, ' . ° S
1.75 g/in3 washcoat loading T 0.35
Uncoated and coated monoliths
0.25
Target heating ]
Air flow rate Air H, flow rate rate &
[WHSV] [WHSV] methanation .
temperature
100 SLPM Humid 1000 scem o~ \ '
[74 hr-1] (~2% H0) [0.75 hr-1] e, SOLAE 0.05
0
1 2 3 4 5 6 7

Cycle no.
mCO2 desorbed ®WCH4 produced @®@CO2 adsorbed

0.45

o
i

ks -

CO, adsorbed/desorbed &

o
w

o
- o
o M

CH, produced (mmol/g)
o

After successful commissioning, we are
optimizing the DFM brick and
operating conditions.
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ImpactofH, Flow Rate on CO, Conversion

CO, adsorbed/desarbed &

1000 sccm H,
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ImpactofH, Flow Rate on CO, Conversion

Conversion further improves by
shortening the duration ofcapture step
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ILessons ILearned

~N O »n kW

CO, canbe captured and converted into methane in a single reactor.

Electric heating was successfully demonstrated to provide the heat for temperature swing and
methanation light-off

Process design developed fora commercialembodiment.
Robust DFM compositions successfully coated on a commercialmonolith.
Mechanicaldesign for long-term operation is being developed.
Low-cost,carbon-free hydrogen is criticalfor commercial viability ofthis technology.

Methane produced from the process can be designated as renewable naturalgas (RNG),and
incentives such as LCFS and 45Q credits willpromote its early adoption.
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Budget Period 2: Planned Work

1. Conductlong-term bench-scale testing

* Parametric testing to optimize operating conditions and productivity
Refine and validate the current process model

Develop a process design and technology package

Perform techno-economic assessment (TEA)and life cycle analysis (LCA)

[V, I SN VS B\

Develop Business/Commercialization plan
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