Machine-Learned Force Field Modeling of Metal Organic Frameworks for CO₂ Direct Air Capture

John Findley NETL Support Contractor

Fossil Energy and Carbon Management Meeting, 2024 Aug. 6, 2024

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Jack Findley^{1,2}; Jan Steckel¹

¹National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

²NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

Physisorbent MOFs for CO₂ Capture

Characteristics of a Good Physisorbent

- Characteristics of a good direct air capture (DAC) sorbent
 - Strong CO₂ adsorption
 - Regenerable
 - Not hindered by humidity
- Example: CALF-20
 - Successfully used for point source
 - Little effect of humidity up to 30% RH
 - Strong **dispersion** interactions ($CO_2 > H_2O$)
- Finding a MOF for DAC
 - 1. Strong CO₂-MOF interactions ($\Delta E_{ads, CO2} < -50$ kJ/mol)
 - 2. Weak H_2O adsorption

Levels of Calculations

Machine Learned Force Fields Connect Classical and Quantum Simulations

- Classical Force Field (speed):
 - **Rigid:** MOF atoms fixed during simulation
 - Flexible: MOF atoms can move
 - Energy, force from analytical function
 - Adsorption isotherm, diffusivity
- Machine Learned Force Field (MLFF):
 - Energy, Force from ML model
 - Better fitting to QM calculations
- Quantum Mechanical (QM) methods (accuracy):
 - Accurate, slow
 - Compute energy, forces, determine structures

Screening for Strong Physisorbing MOFs

Anion-Pillared MOFs for Capture

- Goal: Identifying MOFs with strong CO₂ adsorption
 - Database from Gu and Sholl (2021)²
 - Metals not exposed
 - Tunable metal center, fluorine groups, linkers

²Gu et al., ACS Appl. Mater. Interfaces (2021)

Screening for Physisorbent MOFs

MOFs with Pyrazine Linkers Perform Best

- Computed heats of adsorption
 - ~8000 total MOFs
 - > 10 MOFs with Q_{ads} > 50 kJ/mol
 - Strong association with linker type
 - Weak association with metal
- MOFs with pyrazine linkers outperform others
 - Why pyrazine?
 - Why is the effect of metal so small?

Studying the Adsorption Site

CO₂ Adsorbs at Fluorine Ring Centers

- CO₂ adsorbs at the center of 4 fluorines
 - "tug of war"
 - Near optimum distance for CO₂ F dispersion interactions
 - $E_{dispersion} \approx E_{Electrostatic}$

TIFSIX_3 Zn	ΔE _{ads} (kJ/mol)
Classical FF	-53.0
DFT	-52.1

MOFs with Pyrazine Linkers Perform Best

- Two MOFs from screening have been tested for DAC:
 - **TIFSIX_3_Ni^{3,4}:** 1.2 mmol/g CO₂
 - **SiFSIX_3_Cu⁵:** 1.24 mmol/g CO₂
- Performance warrants more advanced simulation methods
 - Predict uptake in dry, humid conditions

³Ullah et al., Angewandte Chemie (2022) ⁴Low et al. Energy& Fuels (2024) ⁵Shekhah et al., Nature Communications (2014)

MOF	ΔHads, CO2 ⁰ (kJ/mol)
TIFSIX_3_Cu	-57.5
SIFSIX_3_Cu	-56.5
TIFSIX_3_Ni	-52.4
TIFSIX_3_Zn	-50.5

Performance of Rigid Force Fields

Worse Performance at Low Pressure

- CO₂ adsorption overpredicted using rigid force fields
- Does flexibility play a role?

³Ullah et al., Angewandte Chemie (2022) ⁴Low et al. Energy& Fuels (2024) ⁵Shekhah et al., Nature Communications (2014) ⁶Mulcair, Dissertation (2017) ⁷Forrest et al., Crystal Growth and Design (2019)

Why Do We Need MLFFs?

Flexible SiF₆ and TiF₆ can Cause Changes in Window Size

- Poor performance of rigid force fields
 - Overprediction at low P_{CO2}
- DFT molecular dynamics:
 - Significant motion of fluorine atoms
 - Fluorine location affects adsorption strength

MLFF Training Recipe

NATIONAL ENERGY TECHNOLOGY LABORATORY

MLFFs Trained on Accurate DFT Data

Sample Volume Changes

Sample CO₂ Adsorption

Lower Energy CO₂

Optimized MOF

Compressed MOF

Training Configurations

- Favorable (low energy) and unfavorable (high energy)
- MOF with and without CO₂

MLFF Method

- Hybrid SNAP/classical potential
- MLFF handles short range
- Classical handles long range

Performance of MLFF Model (Empty)

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

- Prediction of energy vs. volume curve is almost perfect (bottom)
 - Related to bulk modulus
- Compared energies/forces in QM-based
 dynamics calculations, performance is good
 - 7000 training configurations
 - 1800 testing configurations

Data (Testing set)	R ² Energies	R ² Forces
Structure Optimization	0.998	0.990
AIMD – 300 K	0.991	0.981
AIMD – 450 K	0.990	0.975

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

- Prediction of energy vs. volume curve is almost perfect (bottom)
 - Related to bulk modulus
- Compared energies/forces in QM-based
 dynamics calculations, performance is good
 - 7000 training configurations
 - 1800 testing configurations

Data (Testing set)	R ² Energies	R ² Forces
Structure Optimization	0.998	0.990
AIMD – 300 K	0.991	0.981
AIMD – 450 K	0.990	0.975

Performance of MLFF Model (Empty)

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

Performance of MLFF Model (CO₂ Adsorption)

MLFF Describes Force, Energy for CO₂ (TIFSIX_3_Zn)

- MLFF model accurately describes energies and forces MOF loaded with CO₂
- Training on the error of the classical force field rather improves the model fit
 - $\Delta E_{ads, CO2, MLFF} = -52.9 \text{ kJ/mol}$

Data (Testing set)	R ² Energies	R ² Forces
AIMD – 300K	0.990	0.983
AIMD – 450K	0.990	0.978
MC – 300K	0.975	0.995

- Prediction: TIFSIX-3-Zn adsorbs1.08 mmol/g*
 - 400 ppm, 298 K
- Next: Validate other MOFs
 - TIFSIX(Ni) and SIFSIX (Cu)

Conclusions

- Strong dispersion interactions are important!
- Flexibility is important for CO₂ adsorption at low pressure
- Developed flexible MLFF for TIFSIX MOFs for CO₂ capture
 - Next: Further benchmarking MLFF methods
 - Next: How much of a role does humidity play?

Conclusions

NATIONAL ENERGY TECHNOLOGY LABORATORY

- Screened MOFs for CO₂ capture
 - Strong dispersion interactions are important!
- Flexibility is important for CO₂ adsorption at low pressure
- Developed flexible MLFF for TIFSIX MOFs for CO_2 capture
 - Next: Further benchmarking MLFF methods
 - Next: How much of a role does humidity play?

Conclusions

- Strong dispersion interactions are important!
- Flexibility is important for CO₂ adsorption at low pressure
- Developed flexible MLFF for TIFSIX MOFs for CO_2 capture
 - Next: Further benchmarking MLFF methods
 - **Next:** How much of a role does humidity play?

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

CONTACT: John Findley John.Findley@netl.doe.gov

