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• Characteristics of a good direct air capture (DAC) sorbent
• Strong CO2 adsorption
• Regenerable
• Not hindered by humidity

• Example: CALF-20
• Successfully used for point source
• Little effect of humidity up to 30% RH
• Strong dispersion interactions (CO2 > H2O)

• Finding a MOF for DAC
1. Strong CO2-MOF interactions (ΔEads, CO2  < -50 kJ/mol)
2. Weak H2O adsorption

Characteristics of a Good Physisorbent

Physisorbent MOFs for CO2 Capture
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1Lin et al., Science (2021)



Machine Learned Force Fields Connect Classical and Quantum Simulations

Levels of Calculations
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Speed of 
Calculations
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Accuracy
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MOF atoms fixed

Classical Force Field
(Flexible)

MOF atoms can move

Machine Learned 
Force Field

(MLFF)

Quantum
Mechanics

(QM)

• Classical Force Field (speed):
• Rigid: MOF atoms fixed during simulation
• Flexible: MOF atoms can move
• Energy, force from analytical function

• Adsorption isotherm, diffusivity

• Machine Learned Force Field (MLFF):
• Energy, Force from ML model

• Better fitting to QM calculations

• Quantum Mechanical (QM) methods (accuracy):
• Accurate, slow
• Compute energy, forces, determine structures



Anion-Pillared MOFs for Capture

Screening for Strong Physisorbing MOFs
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• Goal: Identifying MOFs with strong CO2 adsorption
• Database from Gu and Sholl (2021)2

• Metals not exposed
• Tunable metal center, fluorine groups, linkers

2Gu et al., ACS Appl. Mater. Interfaces (2021)



• Computed heats of adsorption
• ~8000 total MOFs
• > 10 MOFs with Qads > 50 kJ/mol
• Strong association with linker type
• Weak association with metal

• MOFs with pyrazine linkers 
outperform others
• Why pyrazine?
• Why is the effect of metal so small?

MOFs with Pyrazine Linkers Perform Best

Screening for Physisorbent MOFs
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• CO2 adsorbs at the center of 4 fluorines
• “tug of war”
• Near optimum distance for CO2 – F dispersion 

interactions
• Edispersion ≈ EElectrostatic

CO2 Adsorbs at Fluorine Ring Centers

Studying the Adsorption Site
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• Two MOFs from screening have been tested for DAC:
• TIFSIX_3_Ni3,4: 1.2 mmol/g CO2 
• SiFSIX_3_Cu5: 1.24 mmol/g CO2

• Performance warrants more advanced simulation 
methods
• Predict uptake in dry, humid conditions

MOFs with Pyrazine Linkers Perform Best

Screening for Physisorbent MOFs
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MOF ΔHads, CO2
0 (kJ/mol)

TIFSIX_3_Cu -57.5

SIFSIX_3_Cu -56.5

TIFSIX_3_Ni -52.4

TIFSIX_3_Zn -50.5

3Ullah et al., Angewandte Chemie (2022)
4Low et al. Energy& Fuels (2024)

5Shekhah et al., Nature Communications (2014)



• CO2 adsorption overpredicted using 
rigid force fields

• Does flexibility play a role?

Worse Performance at Low Pressure

Performance of Rigid Force Fields
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3Ullah et al., Angewandte Chemie (2022)
4Low et al. Energy& Fuels (2024)

5Shekhah et al., Nature Communications (2014)
6Mulcair, Dissertation (2017)

7Forrest et al., Crystal Growth and Design (2019)
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• Poor performance of rigid force fields
• Overprediction at low PCO2

• DFT molecular dynamics:
• Significant motion of fluorine atoms
• Fluorine location affects adsorption strength

Flexible SiF6 and TiF6 can Cause Changes in Window Size

Why Do We Need MLFFs?
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F-F diagonal 



MLFFs Trained on Accurate DFT Data

MLFF Training Recipe
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• Training Configurations
• Favorable (low energy) and 

unfavorable (high energy)
• MOF with and without CO2

• MLFF Method
• Hybrid SNAP/classical potential
• MLFF handles short range
• Classical handles long range
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• Prediction of energy vs. volume curve is almost 
perfect (bottom)

• Related to bulk modulus
• Compared energies/forces in QM-based 

dynamics calculations, performance is good
• 7000 training configurations
• 1800 testing configurations

MLFF Describes MOF Structure and Flexibility (TIFSIX_3_Zn)

Performance of MLFF Model (Empty)
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Data
(Testing set)

R2

Energies
R2

Forces
Structure 

Optimization 0.998 0.990

AIMD – 300 K 0.991 0.981

AIMD – 450 K 0.990 0.975



• MLFF model accurately describes energies and forces 
MOF loaded with CO2

• Training on the error of the classical force field rather 
improves the model fit

• ΔEads, CO2, MLFF = -52.9 kJ/mol

• Prediction: TIFSIX-3-Zn adsorbs1.08 mmol/g*
• 400 ppm, 298 K

• Next: Validate other MOFs 
• TIFSIX(Ni) and SIFSIX (Cu)

MLFF Describes Force, Energy for CO2 (TIFSIX_3_Zn)

Performance of MLFF Model (CO2 Adsorption)
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Data
(Testing set)

R2

Energies
R2

Forces
AIMD – 300K 0.990 0.983

AIMD – 450K 0.990 0.978

MC – 300K 0.975 0.995
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• Screened MOFs for CO2 capture
• Strong dispersion interactions are important!

• Flexibility is important for CO2 adsorption at 
low pressure

• Developed flexible MLFF for TIFSIX MOFs for 
CO2 capture
• Next: Further benchmarking MLFF methods
• Next: How much of a role does humidity play?

Conclusions
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